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Abstract

Our research goal is to realize a robust navigation
in indoor and outdoor environment for autonomous
vehicle. An omnidirectional vehicle driven by four
Mecanum wheels was chosen for our research plat-
form. Mecanum wheel has 16 tilted rollers (45 de-
grees against the direction of wheel rotation) around
the wheel, so the vehicle moves omnidirectionally by
controlling these wheels independently. However, it
has a disadvantage of odometry because of wheels’ slip-
page. Particularly, when the robot moves laterally,
same wheels’ rotations generate different traveling dis-
tance according to a friction of a ground surface.

To cope with the problem, we estimate robot’s po-
sition by detecting optical flow of ground image using
vision sensor (visual dead-reckoning). The estimation
method is inaccurate comparing with odometry, but it
is independent from friction of ground surface. There-
fore, the estimated vehicle position can be improved by
fusing odometry and visual dead-reckoning based on
maximum likelihood technique.

This paper describes an odometry method and a vi-
sual dead-reckoning method for omnidirectional vehi-
cle, and fusion technique to improve the estimated po-
sition of the vehicle. Finally, experimental results sup-
port above technique.

1 Introduction

Our research goal is to realize a smart and robust
navigation for autonomous vehicle in indoor and out-
door environment.

To realize a smart navigation, omnidirectional ve-
hicle has an advantage for narrow passage navigation

and obstacle avoidance. Therefore, we chose an omni-
directional vehicle for research platform driven by four
Mecanum wheels, shown in Figure 1. Mecanum wheel
has 16 tilted rollers (45 degrees against wheel axis)
around the wheel. It enables omnidirectional motion
by controlling 4 Mecanum wheels independently.

For robust autonomous navigation, one of the im-
portant issue is positioning. Odometry is the most
popular method for positioning of wheeled vehicles,
and accumulated error in odometry is usually reduced
by fusing other positioning sensors.

Figure 1: Our Omnidirectional Vehicle

We implemented an odometry system for our om-
nidirectional vehicle by attaching an encoder to each
wheel. However, in our experience, the error of esti-
mated position is generated by friction of ground sur-
face, particularly in lateral movement. To cope with
the problem, we equipped CCD camera to get a se-



ries of ground images, and detects ground speed by
flow image. The estimation is inaccurate comparing
with odometry locally, however it is independent from
friction of ground surface. It means that there is a
chance to improve the accuracy of estimated position
by fusing different information. In this paper, we ap-
ply the fusion method on our omnidirectional vehicle,
and show Experimental results to support a validity
of this method.

2 Related Work

This work relates to three research fields, omnidi-
rectional mechanism, mobile robot localization, and
visual dead-reckoning.

2.1 Omnidirectional Mechanism

To realize horonomic motion of vehicles, several
types of omnidirectional mechanism were presented.
[1] and [2] uses special wheels, which includes free ro-
tating rollers.

We chose a mobile vehicle driven by Mecanum wheels
because it is a commercial wheel chair for handicap
people. The similar type vehicle (named “Uranus”)
was constructed and researched in Carnegie Mellon
University [3].

Because of slippage problem, motion analysis for
Mecanum wheel type vehicle is complicate. [4] de-
scribed a brief of force and velocity analysis of it. In
this research, we reconsider an odometry method for
the vehicle driven by Mecanum wheels.

2.2 Mobile Robot Localization

Localization is a major topic in research area of mo-
bile robot, and many algorithms and techniques have
been proposed. [5] is a complete survey of current lo-
calization techniques. Our localization method uses
Maximum Likelihood technique (e.g. [6]).

2.3 Optical Flow for Navigation

Recently, computing power increases drastically, and
reasonable and high-speed vision processing board that
calculates correlation is now obtainable. Therefore,
optical flow (based on image correlation) can be cal-
culated in quick and robust in standard PC now.

[7] presented detecting method of road information
by optical flow. It clusters free space (on road) and
other objects by tendencies of optical flow information.
Also, vision odometry was presented in [8], that aims

to estimate vehicle’s position by detecting a ground
pattern by CCD camera.

Basically, our approach is similar to above ideas.
However, we do not rely on only visual information
for positioning, but we use the information to support
odometry system.

3 Odometry for Mecanum-wheel-type
Vehicles

3.1 Target Vehicle

Figure 2: A Mecanum
Wheel

Our vehicle has four
Mecanum wheels that en-
ables omnidirectional mo-
tion. Originally, it is a
commercial wheel chair,
and it can be controlled
by joystick. To construct
autonomy on this vehi-
cle, we removed the chair,
and mounted CCD cam-
era, an encoder for each
driving motor and con-
trol PC. The driving mo-
tors are controlled by ad-
justing voltage of joystick
port by D/A converter
board.

Figure 2 shows a photograph of one Mecanum wheel.
It enables omnidirectional motion with free rotation of
rollers, by controlling these wheels independently.

3.2 Kinematics

When Mecanum wheels move, each wheel location
is somewhere along the direction of roller rotation be-
cause of free rollers’ rotation. So, the vehicle’s po-
sition and orientation are fixed singly by kinematics
constraint of wheels’ configuration (the other words,
wheel base and tread never change). Note that the
roller’s directions of four Mecanum wheels are radi-
ated roughly from a center of vehicle, so the position
and orientation are calculable. Figure 3 shows an ex-
ample of (A) rotation and (B) lateral movement for
Mecanum wheel type vehicles.

3.3 Odometry Method

If there is no slippage between Mecanum wheels
and ground surface, and if each roller is equipped in
45 degree tilted correctly, lateral traveling distance is
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Figure 3: Mecanum Wheels’ Motion

equal to forward traveling distance in the same wheels’
rotation. However, an actual lateral traveling distance
is shorter than actual forward traveling distance. It
means that the wheel slippage affects very much when
the robot moves laterally.

A following experimental result is one evidence of
the problem. We controlled the robot by joystick, and
measured a traveling distance of the vehicle on a p-
tile surface. When the vehicle moves forward, each
encoder counts 325 par one centimeter (average). On
the other hand, when the robot moves laterally, en-
coder counts 348 par one centimeter (average).

On the basis of above pilot experiments, a tendency
of distance shortage reappears on the same ground
surface. We assume a virtual moving vector for each
wheel rotation, which is expressed by a certain angle
α from wheel’s rotation direction (we call the angle
“straying angle α”). Of course it is affected by the
ground surface condition. Figure 4 shows a virtual
moving vector for one Mecanum wheel.

A straying angle α for our vehicle is estimated by
a relationship between forward traveling distance and
lateral traveling distance par one wheel rotation.

α = arctan
325
348

= 43.03◦ (1)

Now we can calculate a velocity vector (dx, dy) and
angular velocity ω by following equation.

dx =
1
4
(d1 + d2 + d3 + d4) (2)

Wheel
Movement
Direction

Virtual Moving
Vector

Figure 4: Moving Vector for one Mecanum Wheel

dy =
1
4
(−d1 + d2 + d3 − d4) · tanα (3)

ω = (−d1 + d2 − d3 + d4) · β (4)

In above equations, d1 indicates the differential move-
ment of the front-left wheel. Similarly, d2 corresponds
to the front-right, d3 corresponds to the rear-left, and
d4 corresponds to the rear-right (See Figure 5). β is
also estimated experimentally.
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Figure 5: Coordination of our Omnidirectional Vehicle

We have done several experiments to evaluate an
availability of the odometry. Figure 6 shows one ex-
perimental result, and the vehicle estimates its posi-
tion correctly on the p-tile surface.

3.4 Slipping Problem of Mecanum wheels

If the robot moves on a uniform surface, we can
apply above odometry method directly for Mecanum
wheel type vehicle. However, if the robot enters a
different friction’s ground (e.g. the vehicle comes into
a carpet room from p-tile corridor), an actual traveling
distance of lateral movement changes.

To estimate how much the ground surface affects
in lateral movement, we tested the vehicle on several
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Figure 6: Experimental Result of Dead Reckoning

kinds of surfaces, and calculates each straying angle α
of each ground. Table 1 shows the results.

Table 1: Value α in several Ground Condition

Condition α(deg)
P-Tile 43.03
Asphalt 42.60
Carpet 41.71

According to above experiment, it generates maxi-
mum 5 percent error on a carpet floor comparing with
p-tile’s parameters for our omnidirectional robot.

If there is a pre-knowledge about the ground surface
condition, we can change the straying angle α based
on the knowledge. However, if there is no information
about the ground condition, it is impossible to esti-
mate without external sensors. Therefore, we applied
visual dead reckoning for position estimation to cope
with different ground surface, shown in next section.

4 Visual dead-reckoning

4.1 Main Idea

In assumption of flat ground and fixed camera, a lo-
cation of a ground point can be projected to a certain
pixel on camera image. Therefore, we put a CCD cam-
era at the front of the vehicle (with 45 degree tilted) to
detect a ground image, shown in Fig.7. Then, the ve-
hicle speed can be estimated by detecting flow speeds
of images.
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Figure 7: Configuration of Vision Sensor

To detect optical flows of ground image, we use an
image processing board, FUJITSU Tracking Vision.
It calculates 80 points of correlation between tem-
plate image (16 × 16 pixels) and search space image
(24 × 24 pixel) within 60 milliseconds. Then vehicle
position can be estimated by integral of these speed
vectors. In our current implementation, we realized
only lateral motion to evaluate our method.

4.2 Problems

A problem for visual dead-reckoning is an accuracy.
Once we use optical flow technique for positioning,
it generates quantized errors. Currently, maximum
length of moving vector is 8 pixels, so it has a potential
of more than 10 percent errors. Also, once the vehicle
speed exceeds, it happens to fail matching because the
reference image area may be out of range. Currently,
we experiment with slow vehicle speed (less than 10
[cm / sec]) because of limitation of hardware speed.

5 Fusion of Odometry and Visual Dead-
Reckoning

In section 3 and 4, we noted that (1) odometry for
Mecanum wheel vehicle is easily affected by a ground
friction, and (2) visual dead-reckoning is inaccurate.

These methods are completely independent, so the
odometry can be improved by fusing visual dead reck-
oning. We apply standard Maximum Likelihood Tech-
nique (e.g. [6]) to fuse both estimated positions.

5.1 Model of Odometry

Let the “actual” vehicle position and velocity be
vector P [t] and V [t]. Then, these vectors are expressed
by following equations.

P [t] = [x[t] y[t] θ[t] ]T (5)

V [t] = [vf [t] vs[t] ω[t] ]T (6)



where (x[t] , y[t]) is a location of the vehicle, and θ[t]
is an orientation of it. vf [t] and vs[t] are velocities of
front direction and side direction (note that it is om-
nidirectional vehicle), and ω[t] is an angular velocity
of the vehicle.

An actual position of the vehicle is updated by fol-
lowing recursive equation,

P [t+τ ] = P [t]+τ




vf [t] cosθ[t] − vs[t] sin θ[t]
vf [t] sin θ[t] + vs[t] cosθ[t]

ω[t]


 (7)

where τ is a sampling time. Theoretically, an error
term caused by quantization of calculation is necessary
in above equation, but it is omitted here for simplicity.

Once a function f [P [t], V [t]] is defined as a right
side of (7), actual position of the vehicle can be ap-
proximated by following equations,

P [t + τ ] = f [P [t], V [t]]
= f [P̂ [t] + ∆P [t], V̂ [t] + ∆V [t]]
� f [P̂ [t], V̂ [t]] +

J [t]∆P [t] + K[t]∆V [t] (8)
= P̂ [t + τ ] + ∆P [t + τ ] (9)

where “estimated” position and velocity by odome-
try are expressed as P̂ [t] and V̂ [t], and “error” of po-
sition and velocity are expressed as ∆P [t] and ∆V [t].
Also, J [t] and K[t] are as follows.

J [t] =
δf[P, V ]

δP

∣∣∣∣
P̂ [t],V̂ [t]

K[t] =
δf[P, V ]

δV

∣∣∣∣
P̂ [t],V̂ [t]

According to above equations, positioning error
∆P [t + τ ] can be expressed by following equation.

∆P [t + τ ] = J [t]∆P [t] + K[t]∆V [t] (10)

To estimate how much error (in position and orien-
tation) is produced, we use a covariance matrix, de-
fined as ΣP [t] = E(∆P [t] ·∆P [t]T ). It is a covariance
of errors between position parameters : ∆x, ∆y, ∆θ.
By using (10), it can be calculated recursively as fol-
lows.

ΣP [t + τ ] = E(∆P [t + τ ]∆P [t+ τ ]T )
= J [t]ΣP [t]J [t]T +

K[t]ΣV [t]K [t]T (11)

Covariance matrix of velocity ΣV [t + τ ] is expressed
by following style.

ΣV [t] =




σ2
vf

σvfvs σvfω

σvfvs σ2
vs

σvsω

σvfω σvsω σ2
ω


 (12)

where σvf (or σvs or σω) means variance of error in
front (or side or angular) direction. σvfvs means co-
variance of effectiveness between vf and vs.

We experimented in try and error to find suitable
value of (12) by referring experimental results.

Above all, we obtain vehicle’s position P [t] and co-
variance matrix SigmaP [t] recursively.

5.2 Model of Visual Dead-reckoning

Equations for visual dead-reckoning are the same as
equations for odometry shown in section 5.1, only sam-
pling time τ and covariance matrix of ΣV [t] are dif-
ferent. The values of ΣV [t] for visual dead-reckoning
are also calibrated by experimental results.

5.3 Experimental Result: Error Ellipsoid

Figure 8 shows one experimental result of Error El-
lipsoid. In this experiment, the vehicle was moved
480 centimeters laterally by operator’s joystick con-
trol. Half of the ground surface was concrete, and the
other half was artificial turf that had large friction for
Mecanum wheel. A parameter of “straying angle α”
for odometry was set for p-tile ground.

Upper line of dots represents estimated positions by
odometry, and lower line of dots represents estimated
positions by visual dead-reckoning. Both start point
was the same. (It is shifted one of it just for display.)

We can see that the estimated traveling distance
by odometry is longer than expected one because of
wheels’ slippage.

Figure 8: Experimental Result : Error Ellipsoid



5.4 Fusion by Maximum Likelihood Method

To fuse the information of odometry and visual
dead-reckoning, we use Maximum Likelihood estima-
tion, as following equations.

Σfu =
(
Σop[t]−1 + Σvp[t]−1

)−1 (13)

Where Σop[t] is covariance matrix of position based
on odometry, Σvp[t] is covariance matrix of position
based on visual dead-reckoning, and Σfu means fused
covariance matrix. By using (13), estimated position
is updated by following equation.

P̂fu = ΣfuΣ−1
vp P̂su (14)

Figure 9 shows the fusing result of experiment shown
in Figure 8. In this experiment, fusion is done in every
1 second, and the estimated traveling distance of lat-
eral direction was improved comparing with odometry
only.

Figure 9: Experimental Result : Fusion Result

6 Conclusion and Future Works

We described odometry and visual dead-reckoning
for omnidirectional vehicle driven by Mecanum wheels.
Both methods have merits and demerits, so we fused
them by Maximum Likelihood technique to improve
the estimated vehicle position.

Currently, we have a big problem about an accuracy
of visual dead-reckoning which is calculated by optical
flow, so we can not rely on that information very much.
It can be improved by closing CCD camera to the
ground, and expanding searching area for optical flow
detection.

We also consider about dynamic estimation of “stray-
ing angle α” to adapt ground surface. Theoretically,
visual dead-reckoning result is independent from odom-
etry estimation, so it can estimate a value of “straying
angle α” during vehicle navigation.
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