Sensor Based Navigation for car-like mobile robots using Generalized
Voronoi Graph

K.Nagatani

Y .Iwai

Y .Tanaka

Graduate School of Natural Science and Technology, Okayama University
3-1-1 Tsushima-naka
Okayama 700-8530, JAPAN
Keiji@Qsys.okayama-u.ac.jp

Abstract

Our research objective is to realize sensor based nav-
igation by car-like mobile robots. Generalized Voronoi
Graph (GVG) [1] has an advantage to describe mo-
bile robot’s path for sensor based navigation from the
point of view of completeness and safety. However, it
is impossible to apply the path to car-like mobile robot
directly, because limitation of minimum turning radius
prevents following non-smooth GVG.

To solve the problem, we propose local smooth path
planning algorithm for car-like mobile robots. Basi-
cally, an initial path is generated by conventional path
planning algorithm using GVG theory, and it is de-
formed smoothly to enable car-like robots’ following by
mazximizing an evaluation function proposed in this pa-
per. The key topics are (A) definition of our evalua-
tion function and (B) how to modify the GVG.

In this paper, we introduce a local smooth path plan-
ning algorithm based on GVG, and explain a detail of
the evaluation function. Simulation results support va-
lidity of the algorithm.

1 Introduction

Sensor based navigation enables a robot to explore
an unknown environment and build a map of it, us-
ing its sensor information. This is one of the tradi-
tional research subject for mobile robots’ intelligence
and many algorithms have been proposed.

We focus on sensor based navigation using Gen-
eralized Voronoi Graph (GVG). The GVG structure
has an advantage to express the path of mobile robot
for sensor based navigation from the point of view
of safety and completeness. Safety means that ev-
ery point on GVG is the farthest from the closest ob-
stacles, and completeness means that the GVG is a
unique structure in static environment.

To apply the algorithm to real environment, we
adopt steering type car-like mobile robot as research
platform. It has advantages that it is easy to build by
remodelling a conventional vehicle, and usually load
capacity is very large. However, it has a disadvantage
for steering ability, and we can not apply non-smooth
GVG to car-like mobile robots’ path directly.

To solve the problem, we made local smooth path
planner using an evaluation function to follow GVG
as much as possible.

In this paper, we introduce (A) a detail of the evalu-
ation function and (B) how to generate smooth paths.
Simulation results support a validity of the algorithm.

2 Prior Works

This work contains two research areas: sensor based
planning and nonholonomic robots’ navigation. Al-
though both of these fields are vast, included works in
here are the works that have influenced the authors’
thinking.

2.1 Sensor Based Planning

Sensor based navigation enables a robot to explore
an unknown environment, with an assumption of sim-
ple and weak sensors. One of the famous and ro-
bust algorithm is named “Bug algorithm” proposed
by Prof. Lumelsky [2]. In this algorithm, only sin-
gle touch sensor enables robust exploration, and it
is mathematically complete. However, in actual ex-
ploration case, we believe that the robot should have
more powerful sensors, and it can generate better path
than Bug Algorithms.

The other approach is an incremental procedure to
construct GVG [1]. It requires only line of sight infor-
mation (that is obtainable from robot’s range sensors)
and the procedure has no restrictions on the type of

obstacles. The algorithm has been successfully imple-
mented on an actual mobile robot with a ring of sonar
sensors [3]. Unfortunately, the algorithm can not be
applied to car-like mobile robot because GVG is not
smooth.

Our sensor based navigation is mainly based on in-
cremental approach of constructing GVG. However,
the robot does not follow exact GVG, instead the
robot deforms GVG locally to follow it.

2.2 Nonholonomic Robots’ Navigation

Research area of nonholonomic robots’ navigation
is also vast. Many heuristics algorithms were applied
to actual robots in real environment. One experimen-
tal approach is to use a state transition of trailer type
robot for corner curve, and the robot’s path is gener-
ated by combination of state pattern [4]. It is success-
fully implemented on a real robot. However, target
environment is restricted.

To consider non-heuristic algorithm for any shape
environment, one of simple algorithm for car-like robots
is to use a set of line segments and arc of circles for its
path [5]. It is guaranteed that the robot follows the
path when all circle radiuses are bigger than minimum
steering radius. However, optimality (or safety) is not
discussed in this case. For optimization, the shortest
path for car-like robots in manifold is proposed in [6],
and a nonholonomic distance is discussed in [7].

To consider shape of mobile robots, configuration
space (C-space) is very useful for motion planning [8].
However, it defines only robot’s configuration, and
steering restriction for car-like robots in configuration
space is another problem.

In our approach, traceability of the path is guaran-
teed by checking a maximum curvature for each path.
To check a collision, we construct a C-space to check
an intersection of a point robot to configuration obsta-
cles. Also, optimality and safety are discussed using
our evaluation function.

3 Exploration Procedure

To realize sensor based navigation based on GVG
for car-like robots, we designed following procedure.

1. Acquiring local environment information by range
Sensors

2. Calculating local GVG
3. Constructing Configuration Space (C-space)

4. Generating candidates of smooth path

5. Applying an evaluation function to each path in
C-space, and choosing the best one

6. Executing the planned path in local area

7. Repeating from 1 to 6, until whole GVG struc-
ture is completed.

Basically, the local GVG and C-space are constructed
by conventional algorithm. Therefore, we focus on the
evaluation function and how to generate candidates of
smooth path.

4 Incremental Construction of GVG

In this section, we introduce a sensor based naviga-
tion method by incrementally constructing GVG.

4.1 Generalized Voronoi Graph

In our assumption, target environment is expressed
by free space and a set of obstacles in planar area.
Then the planar GVG is a set of points expressed by
following equation.

G(r) = [d: — dj] (x) = 0 W
where d;(z) is a distance to the closest point within an
obstacle ¢ from robot’s position z. The equation gen-
erates several equidistant edges between two obstacles

(called GVG edges), and Voronoi graph is expressed
by a set of GVG edges.

4.2 Tracing GVG

One of features of this ap-
proach is that the GVG can
be calculated incrementally
by using robot’s range sen-
sor. Then, the exploring mo-
tion is realized by maintain-
ing equidistance between two
closest obstacles. A orienta-
tion of tangent vector of local
GVG edge that the robot should follow is perpendic-
ular to a segment between the location of two closest
points in the closest obstacles. Fig.1 shows an exam-
ple of tangent vector. A mathematical detail of the
control law for tracing GVG is described in [9].

Fig. 1: Tracing

4.3 Meet Points and Boundary Points

A meet point is, as its name suggests, a point where
GVG edges meet. A meet point is (at least) triple

equidistance to the closest obstacles.

Go)= | G- | @ =0

At a meet point, the robot has two or more candidates
of path to trace, so it is very important point in GVG
structure.

A boundary point is a point where two or more
convex obstacles are contacted. Of course, the robot
must stop tracing GVG before it arrives at boundary
point, not to collide obstacles.

4.4 Conventional Exploration Method

Usually, the robot follows GVG (Section 4.2). When
it encounters a meet point, the robot remembers lo-
cation of it, and choose one of unexplored GVG edge.
When it encounters a boundary point, the robot re-
turns the traced GVG edge. Once there is no unex-
plored edge, the exploration task is done.

In above conventional approach, the robot follows
GVG edge exactly to keep equidistance from obstacles,
which a car-like robot can not.

5 Evaluation Function

In this section, we introduce our evaluation function
for choosing optimal smooth path. To evaluate it, we
define two distance functions in configuration space.

5.1 Configuration Space

We can not discuss a distance from robot to obsta-
cles without its shape. Therefore, we construct con-
figuration space in three dimensions, robot’s position
(zr,yr) and orientation 6,.

Once C-space in local environment is constructed
by conventional procedure[8] using laser range finder,
a robot is regarded as a point in it. If a target path
is differentiable, we can calculate an orientation of the
robot at any point on the path. In this case, the path
in C-space is also smooth curve. On the other hand,
the GVG is expressed by surfaces in C-space perpen-
dicular to x-y plane, because the GVG is not differ-
entiable. Fig.2 shows C-space of L-shape environment
and GVG. In this example, we assume a target robot
as a rectangle.

5.2 Distance Functions

It is impossible for car-like robot to trace GVG,
because the path is not smooth. However, the path is
significant from the point of view of completeness and

Fig. 2: Configuration Space and GVG

safety. Therefore, we consider following heuristics for
definition of our evaluation function.

1. The path similar to GVG is better.
2. The path far from the obstacles is better.
According to above, we define following functions.

1. Distance to GVG

Let an objective smooth path in C-space be L,
and a point on L be z.. Then, distance function
to GVG is defined as,

dy(ze) = min||ze — vil 2)

where v; is a point on GVG. Note that the dis-
tance ||z, — v;|| is calculated on a z — y plane
which z. belongs to. It means that 6, is con-
stant.

2. Distance to C-obstacles

Distance function to C-obstacles (obstacles in C-
space) is defined as follows.

do(z) = min||lz — Ci|| (3)

where C; is C-Obstacle on a x — y plane which
x. belongs to.

Above calculation should be done on the plane of
#--constant in C-space. Fig.3 shows an example of two
distance functions.

5.3 Evaluation Function

Based on above distance functions, we defined eval-
uation function j(z.) at each point z. on L by follow-
ing equation.

Robot's Size
and Orientation
B obsiacle GvVG
C-obstacle Smooth Path L

Fig. 3: Distance Functions

1
d,(z.)

The value of (0 < a < 1) is adjusting weight of two
distance functions. In case that « is equal to 0, this
function considers only traceability of GVG. On the
other hand, in case that « is equal to 1, the function
just considers the distance to obstacles.

To evaluate the target smooth path, we calculate
integral of j(z) along the path L, as follows.

Jlae) = a- + (1= a) - dy(z) (4)

1)
JL - m/ll](xc)dxc (5)

Once the candidates of path are determined, we can
calculate an evaluation value for each path by equation
(5). Therefore, next problem is how we can generate
candidates of traceable path for car-like robot locally.

6 Candidates of Smooth Path

In this section, we introduce a method to generate
candidates of smooth path, which are expressed by
Bezier curves.

6.1 Assumption

The number of candidates of path is immense even
if small environment. Therefore, we assume following
condition to narrow candidates.

1. The paths include (1) a point of current robot’s
location, (2) local goal point and (3) meet points.
We call these points as anchor points. The rea-
son we should include meet points is that the

robot can adjust its estimated location easily at
the meet point by sensor information.

2. Anchor points are connected by a cubic Bezier
Curve. Therefore, the path is expressed by a set
of Bezier Curves. The feature of it is that the
line is smooth and differentiable.

3. The paths are smooth enough to be followed by
car-like robots. It is discussed in section 6.3.
Also, the robot should not corride to objects
along the paths.

6.2 Bezier Curve

Bezier curve is famous for creating postscript draw-
ing. It is smooth and differentiable, so it can be ap-
plied to car-like robot’s path. The cubic Bezier curve
is expressed by following equation.

z=x1(1 —u)® 4 3z2(1 — u)*u + 323(1 — w)u® + z4u®

y=y1(1— u)3 + 3y2(1 — u)zu + 3ys(1 — u)u2 + yqu®

where the curve tips are points of (x1,y1) and (z4,y4)-
Points of (z2,y2) and (z3,ys) are called control points
to determine curvature of the path. u is a mediation
variable (0 < u < 1).

According to above equation, Bezier curve is ex-
pressed by four points’ location. Two tips of the curve
overlaps to anchor points. Therefore the curve is de-
termined by two control vectors. The control vector
is defined from an anchor point to the neighbour of
control point.

Additionally, we assume that (A) the lengths of
control vectors are the same in one Bezier curve, (B)
one control vector in Bezier curve ¢ should be the in-
verse orientation of the other control vector in neigh-
bour Bezier curve (i + 1) for smooth connection be-
tween two Bezier curves. An example of above defini-
tion is shown in Fig.4.

Finally, one path that includes n of anchor points
is expressed by (n — 1) of Bezier curves, and (n — 2)
of variable orientation at connecting anchor points.
Therefore, (2n — 3) of parameters is required to define
the path. We can make candidates of smooth path
by changing parameters of control vector length and
orientation for each Bezier curve.

In unreal environment, it is difficult for only cu-
bic Bezier curve to describe path between two anchor
points (e.g. waving corridor). However, to consider
usual environment and car-like robot, we do not as-
sume a very complicated environment.

Bezier Curve

Bezier Curve+l

Anchor Point

ce

Control Poing

-— Control Vecto

Fig. 4: The Path expressed by Bezier Curves

6.3 Traceability

Before applying our evaluation function to a can-
didate path, the traceability should be checked. It is
done by calculation of a maximum curvature in target
path, and checking corrision to objects. Usually, we
had better discuss about the traceability with velocity.
However in this research, we assume that the robot’s
speed is very slow, and we ignore the effect.

In two dimension case, curvature x(u) of general
curve at the location of w is calculated by equation
(6), where curve is expressed as (f.(u), fy(v)) and u
is a mediate variable.

(2o £y (u)) (2 fx(u) — (2 fy (w)) (Lo fx(u))
leng (5 Bx(u))? + (5 fy (u))?)

k(u) =
(6)

The parameter leng is the length of the target curve.
Bezier Curve is second-order differentiable equation,
so curvature is guaranteed to be calculated at any
point along the curve.

Using above equation, we can check the traceability
of each Bezier curve by comparing maximum curva-
ture of car-like robot Kp,qz. It is calculated by

1

Kmaz = (7)
where pp,in i @ minimum turning radius of car-like
robot, which is a peculiar value for each robot.

Finally, the generated curves are mapped into C-
space to check a corrision, and corrision-free paths are
defined as candidate paths.

Pmin

7 Path Planning Method

Once the robot generates C-space and GVG locally,
candidates of smooth path are calculated (Section 6.2)

by changing parameters of control vectors. Then the
evaluation function (Section 5.3) is applied to pick up
the best one.

If the path consists of many Bezier curves, a num-
ber of candidates of smooth path explode and path
planning is computationally impossible. However, we
apply the algorithm in local path planning, and then
the number of combination must be small.

8 Simulation

We implemented local path planning algorithm to
simple L-shape environment. We introduce the simu-
lation results in this section.

8.1 Target Robot and Environment

The size of the car-like robot is almost the same as
actual robot that we possess, shown in Fig.5-(A). In
simulation, we regard the robot as rectangle, shown in
Fig.5-(B).

CCB

/=sdp

T unit/mm

0o

l 3UU
W A 4 600
(a) (B)

Fig. 5: Target Robot

A target environment is L-shape corner, which size
is about 5 meters square. Configuration space and
GVG@G in the environment are calculated in advance,
shown in Fig.2.

8.2 Candidates of Smooth Path

We assume that the robot locates at the middle of
narrow corridor, and goal location is middle of wide
corridor. Both points are the tip of GVG. Note that
the robot obtains the environment information from
range sensors, so it skips exploring to boundary point.

In this case, a number of anchor points are three,
(1) the point of robot’s current location, (2) local goal
point and (3) one meet point. Therefore, the number
of variable parameters is 3(= 2 x 3 —3) to determine a
candidate of smooth path. We generated 20,000 paths

by changing these parameters, checked maximum cur-
vature (equation (6) and (7)), and confirmed not to
collide to obstacles in C-space (Section 6.3). Once the
path is traceable, we calculated evaluation function for
each path (equation (4)), and pickup the best one.

8.3 Simulation Results

To compare an effectiveness of two distance func-
tions, we changed a weight parameter . Fig.6 and
Fig.7 shows two cases of planned path (« = 0 and
a=1).

RIRERT,
L]

T
e T
5 :‘e\qli

Fig. 6: Simulation Result (o = 0)

Fig. 7: Simulation Result (o = 1)

In case of human driving a car, we may choose Fig.7
in intuition. The reason is that the maximum curva-
ture of it is smaller than Fig.6-(A). However, from the
point of view of similarity with GVG, (A) is better.
It means that a depends on the importance of tracing
GVG, and it is very difficult to find the best value.

9 Conclusion and Future Works

We proposed local path planning method for car-
like mobile robot based on GVG. It is not simple so-
lution and computational cost becomes much bigger
than conventional approach. However, the simulation
proves usefulness. One of the chosen path is almost
same as car-driving path for people.

One of our future work is to integrate the local path
planning algorithm into incremental construction of
GVG for large scale exploration. The other is to take
care of switch back motion for car-like robot in the
same outline of our algorithm. Finally, our goal is
to enable sensor based navigation for car-like mobile
robot in real environment.

References

[1] H. Choset, I. Konukseven, and J. Burdick, “Mo-
bile robot navigation: Issues in implementation the
generalized voronoi graph in the plane,” in Proc. of
IEEE/MFI, (Washington DC), 1996.

[2] V. Lumelsky and A. Stepanov, “Path planning strate-
gies for a point mobile automaton moving amidst un-
known obstacles of arbitrary shape,” in Algorithmica,
2, pp. 403-430, 1987.

[3] K. Nagatani, H. Choset, and S. Thrun, “Towards ex-
act localization without explicit localization,” in Proc.
of IEEFE International Conf. on Robotics and Automa-
tion, pp. 342-348, 1998.

[4] M. Viale, T. Tsubouchi, and S. Yuta, “A practical
path and motion planner for a tractor-trailer robot,”
in Proceedings of the IEEE/RSJ International Con-
ference on Intelligent Robots and Systems(IROS)’97,
vol.2, (Grenoble, Canada), pp. 989-996, 1997.

[6] J. Reeds and L. Shepp, “Optimal paths for a car that
goes both forwards and backwards,” Pacific Journal of
Mathematics 145(2), pp. 367-393, 1990.

[6] P. Moutarlier, B. Mirtich, and J. Canny, “Shortest
paths for a car-like robot to manifolds in configuration
space,” Int. Journal of Robotics Research, 15(1):86-60,
1996., 1996.

[7] M. Vendittelli, J. Laumond, and C. Nissoux, “Ob-
stacles distance for car-like robots,” IEEE Trans. on
Robotics and Automation, 15 (4), 1999., 1999.

[8] J.-C. Latombe, Robot Motion Planning. Kluwer Aca-
demic Publishers, 1996.

[9] H. Choset, I. Konuksven, and A. Rizzi, “Sensor based
planning: A control law for generating the generalized
voronoi graph,” in Proc. of IEEE Int. Conf. on Au-
tonomous Robots, (Monterey, CA), 1997.

