軟弱地盤走行ローバーのスリップ率オンライン推定

― 土壌圧力を測定する圧力センサ内蔵型ホイールの開発―

永谷圭司 (東北大院) 山名克尚 (東北大院) 石上玄也 (東北大院) 吉田和哉 (東北大院)

On-line estimation of Slip-ratio for Exploration Rover on Loose Sand –Development of Wheelig with Built-in Force Sensor Array–

*Keiji NAGATANI (Tohoku Univ.), Katsuhisa YAMANA (Tohoku Univ.), Genya ISHIGAMI (Tohoku Univ.), Kazuya YOSHIDA (Tohoku Univ.)

Abstract— Planetary rovers that explore surface of the moon or the Mars are faced with slippage of wheels because of sandy and loose ground. To follow a given trajectory and to avoid stuck of wheels (a sink of wheels into the ground), it is very important to know a relationship between wheels and the ground. One of the important parameters is slip-ratio of each wheel, but it is very difficult to estimate (or calculate) by conventional approaches on-line. Therefore, we developed a wheel with built-in force sensor array that enables direct measurement of distribution of normal stress. By measuring the normal stress, slip-ratio can be calculated by using the terramechanics approach. In this paper, we discuss how the slip ratio can be calculated from distribution of normal stress, and introduce a system of the wheel and a measurement result.

Key Words: Terramechanics, Slip-ratio, Planetary rover

1. はじめに

11 研究背景

月面や火星探査を目的とした「月・惑星探査用移動ロ ボット」(以下,ローバーと呼ぶ)は,その対象環境が 砂地であるため,走行時に車輪のスリップを伴う.こ れを考慮しなければ,目的経路の追従ができないだけ ではなく,車輪が砂に埋もれ,身動きが取れなくなる 事態(スタック)が発生する恐れも存在する.このよ うな事態は,海岸などの砂地上を自動車で運転するこ とで,地上でも実体験できるが,月や火星の砂は,地 球上の砂よりさらに細かいため,ローバーに与えるそ の影響は大きい.例えば図1は,筆者らの研究グルー プが有する四輪ローバーを海岸の砂浜の斜面上で横断 させた実験の様子だが,車輪直径の四分の一以上が砂 に埋もれている.このような状況において,ローバー を目的経路に追従走行させるためには,砂地上での挙 動予測が重要な鍵となる.

砂地上での挙動予測を行う上で最も重要かつ推定困 難なものがスリップ率である.筆者らの研究グループ では、土壌パラメータから垂直応力をボトムアップ的 に推定し、そこからスリップ率を算出することで、ロー バーの挙動解析シミュレーションならびに、実ローバー の挙動解析実験を行ってきた[1][2].もし、垂直応力 を計測することができ、スリップ率を直接的に推定す ることができれば、ローバーの挙動予測を精度良く行 うことが可能となると期待できる.

12 研究目的

以上の背景をふまえ,本研究では,地面との接触面に 複数個の圧力センサを取り付けることで地面からの垂 直応力分布を直接計測することが可能な,圧力センサ 内蔵ホイールを提案する.このホイールを有するロー バーが走行しつつ,ホイールから得られた垂直応力分布

Encoder: measuring

Fig.1 Slope traversing for rover on loose sand ground

Fig.2 Function of wheel with built-in force sensor array

を基にホイールのスリップ率を時々刻々と算出し,ロー バーの挙動を精度良く推定することが,本研究の大目 標である.このホイールの概念図を図2に示す.

筆者らは,これまでに,圧力センサ内蔵ホイールを 一輪試作し,このホイールが土壌から受ける垂直応力 の分布の測定を行った.本稿では,試作した圧力セン サ内蔵型ホイールの紹介と,そのホイールを利用した 土壌圧力測定実験について述べる.

13 関連研究

軟弱地盤を走行する車両と土壌との相互関係におけ る力学がテラメカニクスである.この力学に関する研 究は,1960年代より,BekkerやWongらによって体系 化が行われ [3][4][5],近年は,月・惑星探査ローバーへ の適用が試みられている [6][7][8].筆者らの研究グルー プでも,月・惑星探査用ローバーの挙動解析や走行制 御に関する研究を,テラメカニクスをベースとして進 めている.

テラメカニクスを通じてローバーの挙動を得るには, スリップ率を推定することが重要である.しかしなが ら,スリップ率は,場所によって異なる土壌の組成や 粒形,密度といった土壌パラメータが複雑に作用する ため,それらを事前知識から一定値として得ることは 難しく,スリップ率をオンラインで逐次推定できるこ とが望ましい.

スリップ率のオンライン推定に関する研究としては, ミシガン大学の研究グループが,ホイールに流れる電流 値から車輪の走行トルクを推定し,その情報からスリッ プ率を推定する研究を行っている[8].このアプローチ は,必要とするパラメータが車輪のトルク推定のみで あるという利点を有するが,一般には,減速比の高いギ アを利用する場合,モータの出力電流からそのモータ 軸にかかるトルクを正確に推定することは難しい.ま た,減速比を低くすると,大きなモータが必要となる という点が問題となる.

また,マサチューセッツ工科大学の研究グループで は,車輪に取り付けたエンコーダと,外界に固定した 視覚センサを併用してスリップ率の算出を行っている [6][7].この場合,スリップ率は精度良く測定ができる と期待できるが,大がかりな設備を必要とするといっ た問題がある.

一方,センサをホイールに直接内蔵し,ホイール自体を知能化するというアイディアは,筆者らが平成16~17年度に科学研究費萌芽研究で進めてきた「屋内移動ロボット用センサ内蔵型ホイール」という題目の研究の延長線上に位置する.この萌芽研究では,接触センサやコントローラをホイールに内蔵し,屋内環境における段差検知機能を実現することで,ホイール知能化の有効性を確認した[9].この「センサを有する知能ホイール」に関する研究は,本研究(科学研究費若手研究(B))「センサ内蔵型知能ホイールを用いた砂地走行ローバーの走行制御の研究」に引き継がれている.

2. テラメカニクスによるスリップ率の推定

2.1 スリップ率の定義

砂地などの軟弱地盤においては,一般に,転動する 車輪と路面との間に「スリップ」が生ずる.Wongは, このスリップの程度を考察するため,並進速度 v_x と車 輪回転速度 ω を用いて,スリップ率sを以下の式によ り定義した[5].

$$s = \begin{cases} \frac{r\omega - v_x}{r\omega} & (r\omega > v_x : \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \\ \frac{r\omega - v_x}{v_x} & (r\omega < v_x : \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \end{pmatrix} \end{cases}$$
(1)

Fig.3 An example of distribution of normal stress

なお,式(1)より,スリップ率*s*は,-1から1の間で 定義される.本研究では,この*s*の推定を目的として いる.

2.2 車輪の沈下量について

砂地などの軟弱地盤において車輪が回転する場合,車 輪が土壌を能動的に掘削するために車輪が沈下するが, スリップ率が一定の場合には,動的沈下量が一定値に 収束することが知られている.一方,車輪が転動しな い状態における静的な沈下量は,加重が等しい場合,土 壌パラメータのみによって決まるため,一定値となる. 総沈下量は,上述の静的沈下量と動的沈下量の和で表 されるので,スリップ率一定の場合,車輪の沈下は,定 常状態に落ち着くことがわかる.

2.3 車輪入射角 / 車輪離脱角と応力分布

車輪の沈下は,スリップ率が一定という条件におい て定常状態に収束するため,この状態における車輪の 接地面は一定範囲に収束する.また,車輪を支える力 は,車輪と土壌において生ずる応力を車輪接地面で積 分することで得ることができる.また,土壌から受け る応力分布は,図3に示すような形を形成することが 予想される.この分布中で応力が最大となる最大応力 発生角 θ_m は,測定が非常に困難であるため,一般的 に以下の式を用いて推定する.

$$\theta_m = (a_0 + a_1 s)\theta_f \tag{2}$$

ここで, θ_f は,図3によって定義される車輪入射角であり, a_0 , a_1 は,土壌によって一意に決まる定数である.なお,[10]によると,異なる複数種類の土壌でこれらの値を求めたところ, $a_0 \approx 0.4$, $0 < a_1 < 0.3$ であることが報告されている.

2.4 スリップ率のオンライン推定

式 (2) より,最大応力発生角 θ_m は,車輪入射角 θ_f とスリップ率sという2変数の関数で表される.したがって,予め土壌に依存するパラメータ a_0 , a_1 が既知であるという過程の下,車輪の沈下が定常状態に落ち着いている場合に, $\theta_m \ge \theta_f$ を測定することができれば,スリップ率sは,(2)の変形

$$s = \left(\frac{\theta_m}{\theta_f} - a_0\right)/a_1 \tag{3}$$

によって,逐次推定することが可能となる.

Fig.4 An overview of wheel with force sensor array

3. 圧力センサ内蔵型ホイールの構築

前章で述べた通り、スリップ率のオンライン推定に は、走行中に車輪が土壌から受ける応力分布を計測す ることが有効である.そこで、本研究では、この計測 機能を有する圧力センサ内蔵型ホイール(Wheel with Built-in Force Sensor Array:以下,BFSA Wheel と 略す)を構築した.以下に、構築した車輪のシステム 構成ならびにセンサ単体に関する説明を行う.

3.1 システム構成

「BFSA-Wheel」は,車輪が地面から受ける圧力を測 定するためのセンサ部と,センサ部から送られる情報 を受け取るためのコントローラからなる.センサ部から は,センサに加えられた圧力に応じた電圧が出力され, これをコントローラが AD 変換を行うことで,圧力分布 を計測する.なお,将来的には,ホイール内部に電池を 埋め込み,またホイールとの通信は無線(Bluetooth) を利用する予定であるが,現在の実装では,外部から電 源を供給するためのケーブルならびに,情報伝達のた めの有線シリアル通信ケーブルを接続する必要がある.

一方,システムを組み込む車輪については,筆者らの 研究グループで整備を進めているローバーテストベッ ド「Dune」(図1)の車輪とコンパチビリティのある, 直径150[mm],幅80[mm]のアルミニウム製の車輪を 利用した.試作した「BFSA-Wheel」の外観を図4に 示し,利用したセンサならびにコントローラについて, 次節で述べる.

3.2 圧力センサ

「BFSA-Wheel」に用いる圧力センサに必要な機能 として,車輪の形状に影響を与えないこと,センシン グエリアが小さく,アレイ状に設置可能なことが挙げ られる.そこで,本研究では,厚さが0.819[mm]と非 常に薄型であり,センシングエリアが直径9.5[mm]の 圧力センサ FlexiForce A-201 (ニッタ社製)を用いるこ ととした.センサの外観を図5,仕様を表1に示す.

このセンサは,抵抗体技術を用いたものであり,センサに力を加えると,その力に反比例して抵抗値が減少するという性質を有する.そこで,本研究では,このセンサに電圧を加えて OP アンプで増幅する力-電圧

Fig.5 An overview of FlexiForce

 Table 1 Specification of FlexiForce

外形寸法	$14 \times 203 \times 0.189 \text{ [mm]}$
センシングエリア	直径 9.5[mm]
最大測定荷重	4.4[N] (0.45[kgf])
無負荷時抵抗	$10 \ [M\Omega]$
最大負荷時抵抗	$20 [K\Omega] \pm 15\%$
直線性	$<\pm5\%$

変換回路を構築し,キャリブレーションを行うことで, 路面からの垂直効力の分布を測定することとした.

3-3 コントローラ

コントローラに要求される機能として,まず,セン サから出力されるアナログ電圧をディジタルに変換す るための,A/D 変換機能を備えていることが挙げられ る.また,ホイールの内部は非常に狭いため,コント ローラはこのスペース内に収まる大きさのものでなけ ばならない.そこで本研究では,搭載するコントロー ラとして,H8/3664(ルネサステクノロジ社製)を用い た組込用小型マイコンボードを利用することとした. このH8/3664は,10bitのA/D 変換ポートを8本有 する.ただし,圧力センサのアレイを構成するために は,A/D 変換器の個数が十分ではない.そこで本研究 では,アナログマルチプレクサ(AD608BN:ANALOG DEVICES 社製)を4つ用いることで,8本のA/D 変 換ポートを32本に拡張することとした.

4. 基礎実験:土壌圧力測定

製作したホイールの動作確認を行うため,研究室で 所有する「レゴリスシミュラント(Regolith Simulant)」 という粒径が非常に小さい土壌の上にホイールを置き, センサから得られる土壌からの圧力の測定実験を行っ た.なお,圧力センサについては,図6に示す通り,32 個のセンサをホイールの半周に等間隔で互い違いに設 置したため,一つのセンサが感知する範囲は,約5.6度 となる.

実験の様子を図 7 に示す.また,得られた圧力セン サのプロファイルを図 8 に示す.なお,測定結果のプ

Fig.6 New configuration of sensor array

Fig.7 An overview of basic experiment of measurement

Fig.8 Profile of measurement result

ロファイルの縦軸は,センサから得られた電圧の A/D 変換値であり,横軸は,車輪に設置したセンサの ID で ある.

この測定実験により,同時に5個程度のセンサが圧 力を感知しているが,一回の測定では,土壌圧力分布 曲線を描くことが難しいということが判明した.また, 互い違いに配置したセンサに,均等に力がかからない 場合も見受けられた.今後,センサのキャリブレーショ ンや,複数回の測定によるセンシングデータの平滑化 ならびに高分解能化を行い,土壌圧力分布曲線のオン ライン同定を進める予定である.

5. まとめと今後の課題

本稿では,軟弱地盤上での車輪型ローバーの挙動を 精度よく推定するために不可欠な「スリップ率の推定」 をオンラインで行うため,土壌圧力分布を測定可能な センサ内蔵型ホイールを提案した.また,このホイー ルで測定した土壌圧力からスリップ率を算出するため の一手法について紹介した.さらに,土壌圧力を測定 するため,圧力センサ内蔵型ホイールを試作し,測定 実験を行った.

現在,ホイールに設置したセンサから得られる角度 分解能の粗さが原因で,スリップ率を推定することが 可能な土壌圧力曲線が得られていない.今後の目標は, (1) センサ情報の獲得手法ならびにセンサキャリブレー ションにより土壌圧力曲線を導き出すこと,(2) 土壌圧 力曲線からスリップ率を推定すること,(3) 推定したス リップ率と外部センサで得たスリップ率とを比較し手 法の妥当性を検証すること,である.

謝辞

本研究は,平成16・17年度科学研究費萌芽研究(課題番号:16650038)ならびに,平成18・19年度科学研究費若手研究(B)(課題番号:18760177)によって実施された.

参考文献

- K. Yoshida H. Hamano. Motion dynamics of a rover with slip-based traction model. In *Proceedings of* the 2002 IEEE Int. Conf. on Robotics and Automation (ICRA '02), pages 3155-3160, Washington, DC, USA, 2002.
- [2] G. Ishigami K. Yoshida. Steering characteristics of an exploration rover on loose soil based on all-wheel dynamics model. In *Proceedings of the 2005 IEEE Int. Conf. on Intelligent Robots and Systems (IROS* '05), pp.2041-2048, Edomonton, CANADA, 2005.
- M. G. Bekker. Off-The-Road Locomotion. Ann Arbor, MI, USA, The University of Michigan Press, 1960.
- [4] M. G. Bekker. Introduction to Terrain-Vehicle Systems. Ann Arbor, MI, USA, The University of Michigan Press, 1969.
 [5] J. Y. Wong. Theory of Ground Vehicles. John Wiley
- [5] J. Y. Wong. Theory of Ground Vehicles. John Wiley & Sons, 1978.
- [6] K.Iagnemma, H.Shibly, S.Dubowsky. On-line traction parameter estimation for planetary rovers. In Proceedings of the 2002 IEEE Int. Conf. on Robotics and Automation (ICRA '05), pages 3142-3147, Washington, DC, USA, 2002.
- [7] K.Iagnemma S.Dubowsky. Mobile Robots in Rough Terrain : Estimation, Motion Planning, and Control with Application to Planetary Rovers (Springer Tracts in Advanced Robotics 12). Germany, Springer, 2004.
- [8] Lauro Ojeda et al. Current-based slippage detection and odometry correction for mobile robots and planetary rovers. *IEEE Transaction on Robotics*, 22(2):366-377, 2006.
- [9] 永谷 圭司 石本 智之. 移動ロボット用接触センサ内蔵 型ホイール「i-wheel」の開発. In 第 6 回 計測自動制御 学会 システムインテグレーション部門 講演会論文集, pages 1131–1132, 2005.
- [10] J.Y.Wong A.R.Reece. Prediction of rigid wheel prefoemance based on the analysis of soil-wheel stresses part i, preformance of driven rigid wheels. *Journal of Terramechanics*, 4:81–98, 1967.