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Abstract— For a mobile robot it is critical to detect and
compensate for slippage, especially when driving in rough
terrain environments. Due to its highly unpredictable nature,
drift largely affects the accuracy of localization and control
systems, even leading, in extreme cases, to the danger of
vehicle entrapment with consequent mission failure. This paper
presents a novel method for lateral slip estimation based on
visually observing the trace produced by the wheels of the robot,
during traverse of soft, deformable terrain, as that expected
for lunar and planetary rovers. The proposed algorithm uses
a robust Hough transform enhanced by fuzzy reasoning to
estimate the angle of inclination of the wheel trace with respect
to the vehicle reference frame. Any deviation of the wheel trace
from the expected pose, according to the direction of the robot’s
motion, suggests occurrence of sideslip that can be detected and,
more interestingly, measured. This allows one to estimate the
actual heading angle of the robot, usually referred to as the slip
angle. The details of the various steps of the visual algorithm
are presented and the results of experimental tests performed
in the field with an all-terrain rover are shown, proving the
method to be effective and robust.

I. INTRODUCTION

The mobility of a robot driving across soft soils, such
as sand, loose dirt, or snow, is greatly affected by the
dynamic effects occurring at the wheel-terrain interface,
such as slipping and skidding. As demonstrated by the
Mars exploration of the NASA/JPL rovers Spirit and Op-
portunity [1], wheel slippage is a dominant disturbance on
sandy slopes. This precludes the use of conventional dead-
reckoning techniques for navigation, since they are based
on the assumption that wheel revolutions can be translated
into correspondent linear displacements. Thus, if one wheel
slips, then the associated encoder will register revolutions
even though these revolutions do not correspond to a linear
displacement of the wheel. Conversely, if one wheel skids,
fewer encoder pulses will be counted. Slippage not only
affects the odometric accuracy, but increases the overall
energy consumption and reduces the robot’s traction and
climbing performance. The availability of a sensory system
able to estimate slip would be greatly beneficial to a mobile
robot, so that its pose estimation could be compensated and
corrective control actions may be executed, such as planning
an alternate route away from a low-traction terrain region, or
implementing a traction control algorithm [2]. Additionally,
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accurate position estimation is required for efficient and
robust map building.

Most of the research in the field of mobile robotics has
been focusing on the study of slip along the longitudinal
direction of motion. Longitudinal slip can be estimated
through the use of encoders by comparing the speed of
driven wheels to that of undriven wheels [3]; however this
does not apply for all-wheel drive vehicles or those without
redundant encoders. Reinaet al [4], proposed measures for
slip detection, based on comparing different onboard sensor
modalities within a fuzzy logic inference engine. Ojedaet
al [5], presented a motor current-based slip estimator, while
in [6], a Kalman filter-based approach combining encoders,
IMU, and GPS was discussed for detecting immobilization
conditions of a mobile robot. However, in the presence of
side forces, the robot moves at an angle, usually referred to
as slip angle, with respect to its longitudinal axis, resulting
in lateral slip as well [7]. Thus, it is very important to
address the issue of measuring the combined lateral and
longitudinal slip. A large body of research work exists in
the automotive community related to traction control, anti-
lock braking systems (ABS), and electronic stability program
(ESP). However, these works generally apply to asphalt roads
and at significantly higher speeds than those typical for
autonomous robots [8], [9]. In this area, Kalman filters have
been widely applied to inertial and absolute measurements,
such as GPS, to enhance dead reckoning and estimate lateral
slip [10], [11]. However, GPS is not an option for planetary
applications, nearby trees and buildings can cause signal
loss and multipath errors, and changing satellites can cause
position and velocity jumps [12]. Additionally, GPS provides
low frequency updates (e.g. typically near 1 Hz) making GPS
alone too slow for accurate slip detection.

This paper investigates the feasibility of a novel approach
for slip angle estimation developed for mobile robots travel-
ing on sandy terrain, such as that encountered by planetary
rovers. The general approach is based on using a rear video
camera to observe the pose of the trace that is produced
by the wheels, and detect whether the robot follows the
desired path or deviates from it because of slippage. Figure 1
shows a direct example that will help to clarify this approach,
here proposed for the first time. For the extensive testing
of the system during its development, we employed the
rover El-Dorado, built at the Space Robotics Lab of the
Tohoku University and shown in Fig. 1. The rear webcam,
mounted to a frame attached to the vehicle’s body, is visible
in the same figure. Eldorado is an independently controlled
4-wheel-drive/4-wheel-steer mobile robot, also featuring a
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Fig. 1. Sideslip estimation on sandy terrain by visual observation of the
wheel traces with a rear webcam: (a) wheel traces parallel to the direction of
motion, no lateral slip, (b) wheel traces inclined with respect to the intended
direction of motion, significant lateral slip

typical rocker-type suspension system. Its operational speed
ranges from 2 to 30 cm/s. The robot is equipped with
wheel and steer encoders, a fluxgate compass to measure
the absolute vehicle heading, a rear-mounted camera and
other sensors such as laser range finder and GPS that are
not employed for this application. Figure 1(a) shows El-
Dorado as driving up a sandy slope following a straight path
without any significant sideslip. This is shown by two distinct
traces parallel to the direction of motion and produced by the
wheel pair of either side of the robot. In Fig. 1(b), El-Dorado
negotiates a sandy slope with a contemporary transverse
inclination, as also shown by the slight roll angle of the robot.
The consequent external side force acting on the rover results
in a substantial lateral drift. The traces, left by the wheels of
the same side of the robot, are no longer superimposed and,
most importantly, their angle of inclination, with respect to a
reference frame attached to the vehicle, differs from the case
of absence of slip. The proposed approach aims at estimating
the slip angle of the robot by measuring the pose of one of
the wheel traces, i.e. the rear left wheel, in conjunction with
the knowledge of its rate-of-turn provided by the onboard
compass.

Somewhat related research has been devoted to the study
of lane departure warning systems and automated highways.
A wide variety of techniques has been employed aiming
at developing efficient and robust lane detectors based on
visually observing white road markings on dark and rela-
tively uniform background [13], [14]. In previous research
[15], a method for lane tracking was presented. In this
paper a similar approach is extended and optimized for
the special case of tracking wheel traces on sandy terrain.
Since our approach is based on Hough transform supported
by Fuzzy logic to provide robust and accurate tracking of
the wheel Trace, we call it FTrace. The paper is organized
as follows. Theoretical and experimental description of the
FTrace module is provided in Section II. In Section III, the
system is proved to be effective and robust in field tests
performed with the rover El-Dorado. Section IV concludes
this paper.

II. T HE FTRACE SYSTEM

Tracking the trace of a wheel can turn into a very complex
problem especially when shadows, occlusions, and terrain
unevenness come into play. A robust and efficient trace
detection system must be able to filter out all disturbances
and extract the marking of interest from a non-uniform
background in order to produce an accurate and reliable
estimate of the trace pose relative to the vehicle. In Fig.
2, a sample image set demonstrates the variety of terrain
and environmental conditions that can be encountered. Figure
2(a) shows a scene where trace detection can be considered
relatively easy thanks to the clearly defined imprint and
uniform terrain texture. In Fig. 2(b), extraction of wheel
trace is more difficult due to the presence of transverse line-
like discontinuities of the terrain. Figure 2(c) shows a non-
uniform terrain texture, whereas in Fig. 2(d) and Fig. 2(e)
a more complex wheel trace is shown due to presence of
heavy shadowing. Figure 2f refers to a scene where different
imprints are present.

The FTrace module performs wheel trace tracking based
on a robust Hough Transform enhanced by fuzzy logic. The
relevant geometrical properties extracted from the scene are
optimally combined based on in-depth physical understand-
ing of the problem. In this section, a theoretical analysis
of the method is presented providing also experimental
evidences of its effectiveness.

A. Theoretical Analysis

1) Model Building: The presence of a rear camera
mounted on the vehicle body is assumed, with a field of view
on the ground plane corresponding to a 60 cm long× 80 cm
wide area, behind the left rear wheel. It is also considered
that the location of the camera relative to the wheel is
known and fixed during travel. Under the assumption that
the portion of the trace in the image, and the amount of
sideslip, is relatively small between two consecutive frames,
its curvature can be neglected and it is possible to refer to a
trace model composed of a single line, corresponding to its
centerline. In the image plane of the camera, the model pose
is defined by the two polar parametersρ, andϕ as shown in
Fig. 3. In the real world, we can refer to a simple schematic
of the vehicle, known as the bicycle model [16], and shown
in Fig. 4. The bicycle model neglects weight transfer from
inner to outer tires and assumes the same tires and slip angles
on the inner and outer wheels. The trace pose is defined by
the distancedt with respect to the center of mass of the
vehicle G, and the angleθt between the velocity vector of
the rear wheelVr and the wheel longitudinal axis. This angle
is also usually referred to as the slip angle of the wheelαr.
It is also assumed that the trace originates from the center
of the wheel and thus it must always pass through the point
B, as shown in Fig. 4. With reference to the same figure,
we can also define the slip angleβ of the vehicle as the
angle between the velocity vectorV of its center of mass G
and the longitudinal axisXv. Under the assumption of small
angles, the following linearized relations hold between the
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Fig. 2. Sample images of terrain and wheel trace conditions: (a) uniform
sandy terrain, (b) disturbances due to transversal line-like discontinuities,
(c) non-uniform terrain texture, (d) and (e) non-uniform terrain texture with
noise due to shadowing, (f) different imprints present in the scene

slip angles and the velocity components

β =
Vy

Vx
(1)

αr − δr =
Vy − r · b

Vx
= β − b

R
(2)

whereVx, Vy are the longitudinal and lateral component of
the velocity vectorV , δr is the rear steer angle,r is the
rate-of-turn expressed in rad/s,R, defined asR = Vx/r,
represents the distance of the instantaneous center of rotation
from the longitudinal axis of the vehicle, andb is the distance
between the rear axis and the center of mass G.
From (2), it is possible to estimate the slip angleβ, given
δr and Vx from the steer and wheel encoders, andr by
differentiation from the onboard compass. Note, however,
that the contribution of the termb/R is typically very small
and practicallyβ can be confused withαr, when alsoδr is
null.

2) Trace tracking:The FTrace module performs two main
tasks:
• Extraction of trace candidates and estimation of their

pose with respect to the camera, i.e. the vehicle, refer-
ence frame.

• Selection of the candidate that best fits to the trace
model.

In the reminder of this section each phase is described in
detail.
Trace extraction —Each image is processed following two
steps. First, an optimized Canny’s edge detection [17] is
performed. Then, Hough transform [18], is applied to extract
lines from the scene. Edges in images are areas with strong
intensity contrasts. Edge detection significantly reduces the
amount of data and filters out useless information, while
preserving the important structural properties of the objects
in the scene. The Canny’s operator is based on a 3×3 Sobel
kernel and the Low Threshold (LT) and High Threshold (HT)
hysteresis were well determined experimentally as

LT =
Imax − Imin

3
(3)

HT = 2.5 · LT (4)

where Imax and Imin are the maximum and minimum
intensity value, respectively, detected in the current frame.
Ideally, edge detection is able to identify object boundaries.
However, because of noise, non-uniform illumination, and
other spurious effects, this technique usually fails to charac-
terize edges completely. Hence, edge linking methods must

Fig. 3. Model of the trace of the wheel in the image plane. Note that the
parameterρ is expressed in pixels

Fig. 4. Model of the trace in the real world with reference to a bicycle
schematization of the robot



Fig. 5. Membership functions of the FTrace system

be used to assemble pixels into meaningful edges. One of the
most known edge linking methods is the Hough transform
that allows one to fit lines to the edges, detected by Canny’s
operator. At the end of the Hough transform application, a
set of trace candidates will be available.
Trace selection —In order to determine which line best fits

to the trace model we use fuzzy reasoning [19]. The general
approach is based on comparing the geometrical properties of
each candidate with those of the trace model, (as defined in
Section II-A.1), in both the image plane and the real world,
and defining deterministic conditions for model matching.
The output of the FTrace is a fuzzy quantity that expresses
the certainty that the line agrees exactly with the trace model.

Given n lines (e.g.,n=10) extracted from the imagei
and generally denoted asT i

j (e.g., j = 1, 2,..,n), one can
compute their pose in the image planeP i

j = (ρi
j , ϕ

i
j), and

compare it with that of the trace marker obtained in the
previous frameP i−1 = (ρi−1, ϕi−1). Under the assumption
of relatively small displacement of the trace with respect
to the robot between two consecutive frames,P i−1 can be
regarded as a good reference value. If the trace poseP i

j

agrees withP i−1, then one can expect good correspondence
between that line and the trace model. Poor correspondence
suggests low likelihood of matching. Similarly, the pose of
the trace candidateT i

j in the real worldRi
j = (di

j , θ
i
j)

can be compared with that estimated in the previous frame
Ri−1 = (di−1, θi−1). Small change in the distance and
orientation values suggests high likelihood of matching of
the candidate with the model.
Finally, in the real world, the candidateT i

j must also fulfill
the geometrical constraint of passing through the center of
the wheel, namely point B in Fig. 4. With reference to the
same figure, one can compute the intersectionY i

j of the
candidateT i

j with the parallel to the axisYv through point
B, and the distance ofY i

j from the center of the wheel as
∆Y i

j = |Y i
j − YB |, whereYB is the coordinate of B along

Yv. If the discrepancy is small, then one can expect good
agreement with the model. Conversely, large values of∆Y i

j

suggest poor confidence of matching.
We express these hypotheses with fuzzy logic that uses

rules to map from inputs to outputs. The triangular member-
ship functions of the inference system are shown in Fig. 5.
The fuzzy data fusion uses five inputs and one output. The
inputs are the geometrical data, i.e., the absolute difference
in distance and orientation estimated in the image plane,
denoted with∆ρj and ∆ϕj respectively, and in the real
world, denoted with∆dj and∆θj respectively, between the
candidate pose and the model pose in the previous frame, and
the distance∆Y i

j of the candidate from the wheel center B.
The output is a dimensionless factor, ranging from zero to
one, which expresses the degree of confidence we have that
the candidate matches the trace model. The fuzzy inference
system fuses the geometrical information based on theif-then
rule set shown in Table I. Those rules express our physical
understanding of the phenomenon and they were chosen to
give the best performance over other alternatives using a trial
and error process. The rule set is not unique; new rules may
be thought of and implemented to improve the output of the
system.

B. Experimental Analysis

Representative experimental results of the FTrace are
shown in Fig. 6 for a sample image where ten candidates
were extracted by our system. Table II collects the confidence
match for each one of the lines, as estimated by the FTrace
module. As expected, the lane markerL7 yields the greatest
confidence level (87%), and is therefore selected as the best
match. In Fig. 6(d), the output of the FTrace system is
overlaid over the original scene along with the estimated
values ofdt andθt.

III. E XPERIMENTAL RESULTS

In this section experimental results are presented, aimed
at assessing the overall effectiveness of the FTrace method.
Tests were performed in the field using the rover El-Dorado,
equipped with a cost-effective rear webcam, and a sampling
rate of 5 Hz. The webcam was calibrated using the Matlab
camera calibration toolbox [20]. The test field was located on
the shoreline of a sandy beach, comprising large flat areas
and sparse mounds of different extensions and heights. In
all experiments, the rover was remotely controlled using a
wireless joypad with a travel speed of about 8 cm/s. Two
types of path were considered:

TABLE I

FUZZY LOGIC RULES USED BY THEFTRACE MODULE

Rule Input: Output:

# ∆ρj ∆ϕj ∆dj ∆θj ∆Y i
j

Confidence
Match

1 Small Small Small Small Small High
2 Small Large Small Large Small Med.
3 Large Small Large Small Large Low
4 Large Large Large Large Large Low
5 Large Large Small Small Large Low
6 Small Small Large Large Small Med.



TABLE II

DEGREE OF CONFIDENCE IN THE WHEEL TRACE CANDIDATES OFFIG. 6, AS DERIVED FROM THEFTRACE SYSTEM

Candidate
L1 L2 L3 L4 L5 L6 L7 L8 L9 L10Line #

Confidence
2.1 1.1 70.4 81.7 24.3 75.4 87.0 10.3 18.7 20.2

Match %

• Path A: straight-line path on sandy relatively flat
terrain. These experiments were aimed at evaluating
undue errors of the FTrace system incurred by low-
slippage terrain.

• Path B: straight-line path on non-flat terrain, including
driving uphill or sideways on sandy slopes with sub-
stantial lateral slip.

The entire experimental area was within the range of a
laser-based absolute positioning system that provided the
ground-truth translational position(x, y, z) with respect to a
global coordinate axes. The ground-truth sideslip angle of the
robotβg was estimated as the difference between the absolute
vehicle heading directionψl, derived by the laser position-
measurement system, and the vehicle headingψ, measured
by the onboard compass

ψl = arctan(
ẏ

ẋ
) (5)

βg = ψl − ψ (6)

The FTrace system was tested over a total of 5016 images
showing the results collected in Table III for both sets of
experiments. The percentage of false positives, i.e. a trace

(a) (b)

(c) (d)

Fig. 6. Application of the FTrace system to a sample image: (a) original
scene, (b) and (c) application of edge detection and Hough transform, (d)
output of the FTrace system. Note that for this image no sideslip was
detected

TABLE III

RESULTS OBTAINED FROM THEFTRACE SYSTEM FOR DIFFERENT

TERRAINS. SET A: FLAT SANDY TERRAIN, SET B: NON-FLAT TERRAIN

Set # Frames
False False

Misid.(%)
Positives (%) Negatives (%)

A 1560 0.0 1.5 0.0
B 3456 0.8 2.7 1.7

marker detected when actually there is no trace marker,
was less than 1%. Conversely, false negatives arise when
the trace marker is present in the image but the system
is not able to detect it at all and does not return any
information. The percentage of false negatives was less than
3%. Finally, misidentifications refer to cases in which a
trace marker is present in the image but the system fails
in recognizing it properly and returns wrong information. In
all tests, misidentifications were less than 2%. The system
proved to be robust to disturbances due to heavy shadowing,
non-uniform terrain texture, and the presence of overlapping
imprints.

In order to assess the effectiveness of the FTrace system
in estimating lateral drift, a typical test on non-flat terrain
is presented. In this experiment, El-Dorado was commanded
to move straight forward, driving sideways on a sandy slope
resulting in a total travel distance of about D=7 m. Figure 7
shows the position of El-Dorado and the imprints produced
by its wheels at the end of the run, from a front and rear
view, respectively. In Fig. 8, the slip angle, derived from
the FTrace system using (2), is compared with the ground-
truth data. The two curves show good agreement with a root
mean square (RMS) error less than 2deg. The FTrace system
detected effectively the onset of sideslip and its successive
trend throughout the experiment. Two different stages can be
distinguished during the test. In the first stage referring to
the first 60 seconds, the robot followed its intended straight
path without any lateral drift. This is demonstrated by the
two wheel traces parallel to the direction of motion. The
second stage marks the onset of sideslip caused by the
external lateral force acting on the rover due to the transverse
inclination of the terrain. As direct consequence, a variation
in the angle of inclination of the wheel traces is produced
attesting to the occurrence of sideslip (see also Fig. 7). Since
the accuracy of the FTrace method was consistent in all the
experiments of both set A and B, this result can be regarded
as of general significance.
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Fig. 7. Traces produced by the wheels of the rover at the end of the
traverse of a sandy slope: (a) front view, (b) rear view

IV. CONCLUSIONS

In this paper, a novel method for sideslip estimation
was presented based on observing the wheel traces left
by a robot during its traverse of sandy terrains. A visual
algorithm was proposed to estimate the pose of the traces
using Hough transform enhanced by fuzzy reasoning. The
important geometrical data of the scene are combined based
on the physical understanding of the problem providing
accuracy and robustness. Comprehensive experiments in the
field demonstrated the overall effectiveness of the proposed
FTrace method for slip angle estimation on sandy terrain
with a percentage of failed observations less than 2% and
an accuracy of 1.4deg. The FTrace module could be
effectively employed to enhance the mobility of robots on
highly challenging terrains by integration with conventional
control and localization algorithm.

Fig. 8. Effectiveness of the FTrace system in estimating slip angle during
sideways traverse of a sandy slope
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