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Abstract—For a mobile robot it is critical to detect and accurate position estimation is required for efficient and
compensate for slippage, especially when driving in rough robust map building.
terrain environments. Due to its highly unpredictable nature, Most of the research in the field of mobile robotics has
drift largely affects t_he accuracy of localization and control b f - the study of sli | the | itudinal
systems, even leading, in extreme cases, to the danger of gen. ocusing on e st 1y 0, Slip gong e ong! udina
vehicle entrapment with consequent mission failure. This paper direction of motion. Longitudinal slip can be estimated
presents a novel method for lateral slip estimation based on through the use of encoders by comparing the speed of
visually observing the trace produced by the wheels of the robot, driven wheels to that of undriven wheels [3]; however this
during traverse of soft, deformable terain, as that expected  yoeg not apply for all-wheel drive vehicles or those without
for lunar and planetary rovers. The proposed algorlthm_ uses redundant encoders. Reiea al [4], proposed measures for
a robust Hough transform enhanced by fuzzy reasoning to i . : I |
estimate the angle of inclination of the wheel trace with respect Slip detection, based on comparing different onboard sensor
to the vehicle reference frame. Any deviation of the wheel trace  modalities within a fuzzy logic inference engine. Ojeela
from the expected pose, according to the direction of the robot's 3| [5], presented a motor current-based slip estimator, while
motion, suggests occurrence of sideslip that can be detected and, i, 16] a Kalman filter-based approach combining encoders,
more |ntere_st|ngly, measured. This allows one to estimate t_he IMU, and GPS was discussed for detecting immobilization
actual heading angle of the robot, usually referred to as the slip ' © . h
angle. The details of the various steps of the visual algorithm conditions of a mobile robot. However, in the presence of
are presented and the results of experimental tests performed side forces, the robot moves at an angle, usually referred to
in the field with an all-terrain rover are shown, proving the  as slip angle, with respect to its longitudinal axis, resulting
method to be effective and robust. in lateral slip as well [7]. Thus, it is very important to
| INTRODUCTION addr.ess. the i;sue of measuring the combined Iat(_aral .and
longitudinal slip. A large body of research work exists in
The mobility of a robot driving across soft soils, suchthe gutomotive community related to traction control, anti-
as sand, loose dirt, or snow, is greatly affected by thgck braking systems (ABS), and electronic stability program
dynamic effects occurring at the wheel-terrain interfacqesp). However, these works generally apply to asphalt roads
such as slipping and skidding. As demonstrated by thend at significantly higher speeds than those typical for
Mars exploration of the NASA/JPL rovers Spirit and Op-aytonomous robots [8], [9]. In this area, Kalman filters have
portunity [1], wheel slippage is a dominant disturbance oReen widely applied to inertial and absolute measurements,
sandy slopes. This precludes the use of conventional deagich as GPS, to enhance dead reckoning and estimate lateral
reckoning techniques for navigation, since they are basegly [10], [11]. However, GPS is not an option for planetary
on the assumption that wheel revolutions can be translatg@plications, nearby trees and buildings can cause signal
into correspondent linear displacements. Thus, if one whegjss and multipath errors, and changing satellites can cause
slips, then the associated encoder will register revolutiorﬁosition and velocity jumps [12]. Additionally, GPS provides
even though these revolutions do not correspond to a linegygy frequency updates (e.g. typically near 1 Hz) making GPS
displacement of the wheel. Conversely, if one wheel skidgjone too slow for accurate slip detection.
fewer encoder pulses will be counted. Slippage not only This paper investigates the feasibility of a novel approach
affects the odometric accuracy, but increases the overg)r slip angle estimation developed for mobile robots travel-
energy consumption and reduces the robot's traction amgy on sandy terrain, such as that encountered by planetary
climbing performance. The availability of a sensory systerfoyers. The general approach is based on using a rear video
able to estimate S||p W0u|d be greatly benefiCial to a mob”@amera to observe the pose Of the trace that iS produced
robot, so that its pose estimation could be compensated aggl the wheels, and detect whether the robot follows the
corrective control actions may be executed, such as planniggsired path or deviates from it because of slippage. Figure 1
an alternate route away from a low-traction terrain region, a§hows a direct example that will help to clarify this approach,
implementing a traction control algorithm [2]. Additionally, here proposed for the first time. For the extensive testing
. . of the system during its development, we employed the
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Il. THE FTRACE SYSTEM

Tracking the trace of a wheel can turn into a very complex
problem especially when shadows, occlusions, and terrain
unevenness come into play. A robust and efficient trace
detection system must be able to filter out all disturbances
and extract the marking of interest from a non-uniform
background in order to produce an accurate and reliable
estimate of the trace pose relative to the vehicle. In Fig.
2, a sample image set demonstrates the variety of terrain
and environmental conditions that can be encountered. Figure

@ (b) 2(a) shows a scene where trace detection can be considered
relatively easy thanks to the clearly defined imprint and
i acss wi  onD T, 8 ahe e el o O™ [erain texture In Fig 200, extracion of wheel
Vn\;o(taign, no lateral slip, (b) wheel traces inclined Witr? respect to the intende ace is more difficult due to the presence of transverse line-
direction of motion, significant lateral slip like discontinuities of the terrain. Figure 2(c) shows a non-
uniform terrain texture, whereas in Fig. 2(d) and Fig. 2(e)
a more complex wheel trace is shown due to presence of

typical rocker-type suspension system. Its operational spe_@@a‘{y shadowing. Figure 2f refers to a scene where different
ranges from 2 to 30 cm/s. The robot is equipped withMPrints are present.
wheel and steer encoders, a fluxgate compass to measurd e FTrace module performs wheel trace tracking based
the absolute vehicle heading, a rear-mounted camera aPid & robust Hough Transform enhanced by fuzzy logic. The
other sensors such as laser range finder and GPS that &Hévant geometrical properties extracted from the scene are
not emp|0yed for this app"cation_ Figure 1(a) shows E|.0pt|ma”y combined based on In-depth phySICal understand-
Dorado as driving up a sandy slope following a straight pat'ppg of the problem. In this section, a theoretical analysis
without any significant sideslip. This is shown by two distinc®f the method is presented providing also experimental
traces parallel to the direction of motion and produced by trh@vidences of its effectiveness.
wheel pair of either side of the robot. In Fig. 1(b), El-Dorado ) .
negotiates a sandy slope with a contemporary transvere Theoretical Analysis
inclination, as also shown by the slight roll angle of the robot. 1) Model Building: The presence of a rear camera
The consequent external side force acting on the rover resufounted on the vehicle body is assumed, with a field of view
in a substantial lateral drift. The traces, left by the wheels &§n the ground plane corresponding to a 60 cm leng0 cm
the same side of the robot, are no longer superimposed aRglde area, behind the left rear wheel. It is also considered
most importantly, their angle of inclination, with respect to ahat the location of the camera relative to the wheel is
reference frame attached to the vehicle, differs from the cagBown and fixed during travel. Under the assumption that
of absence of slip. The proposed approach aims at estimatifi@ portion of the trace in the image, and the amount of
the slip angle of the robot by measuring the pose of one @fdeslip, is relatively small between two consecutive frames,
the wheel traces, i.e. the rear left wheel, in conjunction witlts curvature can be neglected and it is possible to refer to a
the knowledge of its rate-of-turn provided by the onboargrace model composed of a single line, corresponding to its
compass. centerline. In the image plane of the camera, the model pose
Somewhat related research has been devoted to the stislylefined by the two polar parametersandy as shown in
of lane departure warning systems and automated highwaydg. 3. In the real world, we can refer to a simple schematic
A wide variety of techniques has been employed aimingf the vehicle, known as the bicycle model [16], and shown
at developing efficient and robust lane detectors based amFig. 4. The bicycle model neglects weight transfer from
visually observing white road markings on dark and relamner to outer tires and assumes the same tires and slip angles
tively uniform background [13], [14]. In previous researchon the inner and outer wheels. The trace pose is defined by
[15], a method for lane tracking was presented. In thithe distanced; with respect to the center of mass of the
paper a similar approach is extended and optimized faehicle G, and the anglé, between the velocity vector of
the special case of tracking wheel traces on sandy terraihe rear wheel/. and the wheel longitudinal axis. This angle
Since our approach is based on Hough transform supportesdalso usually referred to as the slip angle of the wheel
by Fuzzy logic to provide robust and accurate tracking oft is also assumed that the trace originates from the center
the wheel_Tracewe call it FTrace. The paper is organizedof the wheel and thus it must always pass through the point
as follows. Theoretical and experimental description of thB, as shown in Fig. 4. With reference to the same figure,
FTrace module is provided in Section Il. In Section Ill, thewe can also define the slip angle of the vehicle as the
system is proved to be effective and robust in field testangle between the velocity vectdr of its center of mass G
performed with the rover El-Dorado. Section IV concludesnd the longitudinal axis(,,. Under the assumption of small
this paper. angles, the following linearized relations hold between the




2) Trace tracking:The FTrace module performs two main

tasks:

« Extraction of trace candidates and estimation of their
pose with respect to the camera, i.e. the vehicle, refer-
ence frame.

« Selection of the candidate that best fits to the trace
model.

In the reminder of this section each phase is described in
detail.

Trace extraction —Each image is processed following two
steps. First, an optimized Canny’s edge detection [17] is
performed. Then, Hough transform [18], is applied to extract
lines from the scene. Edges in images are areas with strong
intensity contrasts. Edge detection significantly reduces the
amount of data and filters out useless information, while
preserving the important structural properties of the objects
in the scene. The Canny’s operator is based oxa Sobel
kernel and the Low Threshold (LT) and High Threshold (HT)
hysteresis were well determined experimentally as

d _ )
(© (d) LT — Imaz 3 Iin (3)

HT =25-LT )

where I,,,., and I,,;, are the maximum and minimum
intensity value, respectively, detected in the current frame.
Ideally, edge detection is able to identify object boundaries.
However, because of noise, non-uniform illumination, and
other spurious effects, this technique usually fails to charac-
terize edges completely. Hence, edge linking methods must

(e ®
\
Fig. 2. Sample images of terrain and wheel trace conditions: (a) uniform Image Plane \
sandy terrain, (b) disturbances due to transversal line-like discontinuities,
(c) non-uniform terrain texture, (d) and (e) non-uniform terrain texture with .
noise due to shadowing, (f) different imprints present in the scene

slip angles and the velocity components
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Fig. 3. Model of the trace of the wheel in the image plane. Note that the
arametelp is expressed in pixels
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whereV;, V, are the longitudinal and lateral component of
the velocity vectorV, §, is the rear steer angle, is the
rate-of-turn expressed in rad/®, defined asR = V. /r,
represents the distance of the instantaneous center of rotation
from the longitudinal axis of the vehicle, ahds the distance
between the rear axis and the center of mass G.

From (2), it is possible to estimate the slip anglegiven

0, and V, from the steer and wheel encoders, andy
differentiation from the onboard compass. Note, however, k/
that the contribution of the tery/ R is typically very small

and practically3 can be confused with,., when alsod,. is Fig. 4. Model of the trace in the real world with reference to a bicycle
null. schematization of the robot

Trace centerline



i suggest poor confidence of matching.

We express these hypotheses with fuzzy logic that uses
rules to map from inputs to outputs. The triangular member-

T Sy oo .1 ship functions of the inference system are shown in Fig. 5.

INTPUT - Geometrical Data (image Plane) ’ i The fuzzy data fusion uses five inputs and one output. The
b | inputs are the geometrical data, i.e., the absolute difference
in distance and orientation estimated in the image plane,
: i denoted withAp; and Ayp; respectively, and in the real
U — Bl o A Sl L e S ' world, denoted withAd; and Ad; respectively, between the
candidate pose and the model pose in the previous frame, and
the distanceﬁYj" of the candidate from the wheel center B.
The output is a dimensionless factor, ranging from zero to
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High one, which expresses the degree of confidence we have that
T the candidate matches the trace model. The fuzzy inference
Match Confidence system fuses the geometrical information based orif-ten
Fig. 5. Membership functions of the FTrace system rule set shown in Table I. Those rules express our physical

understanding of the phenomenon and they were chosen to
give the best performance over other alternatives using a trial

and error process. The rule set is not unique; new rules may

be used to assemble pixels into meaningful edges. One of i§g 15yght of and implemented to improve the output of the
most known edge linking methods is the Hough transforrgystem_

that allows one to fit lines to the edges, detected by Canny’s
operator. At the end of the Hough transform application, 8. Experimental Analysis

set of trace candidates will be available. Representative experimental results of the FTrace are
Trace selection —n order to determine which line best fits Shown in F|g 6 for a Samp|e image Where ten Candidates
to the trace model we use fuzzy reasoning [19]. The genergkre extracted by our system. Table Il collects the confidence
approach is based on comparing the geometrical propertiesfahtch for each one of the lines, as estimated by the FTrace
each candidate with those of the trace model, (as defined ifodule. As expected, the lane marker yields the greatest
Section II-A.1), in both the image plane and the real worldgonfidence level (87%), and is therefore selected as the best
and defining deterministic conditions for model matchingmatch. In Fig. 6(d), the output of the FTrace system is
The output of the FTrace is a fuzzy quantity that expressegerlaid over the original scene along with the estimated
the certainty that the line agrees exactly with the trace modglg|yes ofd, and®,.

Given n lines (e.g.,n=10) extracted from the image
and generally denoted él%l (e.9.,7 =1, 2,..,n), one can . ' . '
compute their pose in the image p|a_ﬁ¢§ = (pz‘,,@;ﬁ), and In this _secﬂon expenmental_ results are presented, aimed
compare it with that of the trace marker obtained in th@t assessing the overall effectiveness of the FTrace method.
previous frameP'~! = (p'~!, ©*~1). Under the assumption Tests were performed in the field using the rover El-Dorado,
of relatively small displacement of the trace with respecéquipped with a cost-effective rear webcam, and a sampling
to the robot between two consecutive fram&é,! can be rate of 5 Hz. The webcam was calibrated using the Matlab
regarded as a good reference value. If the trace ﬂ%;ée camera calibration toolbox [20]. The test field was located on
agrees withP’~!, then one can expect good correspondend&e shoreline of a sandy beach, comprising large flat areas
between that line and the trace model. Poor corresponder®ied sparse mounds of different extensions and heights. In
suggests low likelihood of matching. Similarly, the pose oflll experiments, the rover was remotely controlled using a
the trace candidat@; in the real world R;'. — (d§,79§) wireless joypad with a travel speed of about 8 cm/s. Two
can be compared with that estimated in the previous frantgpes of path were considered:

R=1 = (d=1,0°~1). Small change in the distance and

IIl. EXPERIMENTAL RESULTS

orientation values suggests high likelihood of matching of TABLE |

the candidate with the model. _ FUZZY LOGIC RULES USED BY THEFTRACE MODULE

Finally, in the real world, the candidat€; must also fulfill

the geometrical const_raint ef pessing through the center ofrgye TpUE Output.

the wheel, namely point B in Fig. 4. Wlth reference to the 4 Ap;  Dp;  Ad; A6 AYS Confldehnce

same figure, one can compute the intersectignof the Matc
didateT” with the parallel to the axi&,, through point small - Small - Small - Small - Small - High

candi J pa v ghp Small Large Small Large Smal Med.

B, and the distance onZ from the center of the wheel as Large Small Large Small Large Low

AY] = |Y; — Y|, whereYp is the coordinate of B along
Y,. If the discrepancy is small, then one can expect good
agreement with the model. Conversely, large valuegbj"

Large Large Small Small Large Low

I

o)
Large Large Large Large Large Low
Small Small Large Large Small Med.
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TABLE Il
DEGREE OF CONFIDENCE IN THE WHEEL TRACE CANDIDATES OFIG. 6, AS DERIVED FROM THEFTRACE SYSTEM

Candidate

Linel# Ll L2 LS L4 L5 L6 L7 LS Lg LlO

Confidence

Match % 21| 11| 704 | 817 | 243 | 75.4| 87.0| 10.3| 18.7 | 20.2
TABLE Il

e Path A: straight-line path on sandy relatively flat
. . . . RESULTS OBTAINED FROM THEFTRACE SYSTEM FOR DIFFERENT
terrain. These experiments were aimed at evaluatmgr
ERRAINS. SET A: FLAT SANDY TERRAIN, SET B: NON-FLAT TERRAIN

undue errors of the FTrace system incurred by low-
slippage terrain.

. ; : I ; False False L
. P(_zt_h B: strglght—llne path on non-flat terrain, |nf:lud|ng Set# | Frames| oo . @) | Negatives (%) Misid. (%)
driving uphill or sideways on sandy slopes with sub- A 1560 00 15 0.0
stantial lateral slip. B 3456 0.8 27 17

The entire experimental area was within the range of a
laser-based absolute positioning system that provided the
ground-truth translational positiofx, y, z) with respect to a
global coordinate axes. The ground-truth sideslip angle of the
robot 3, was estimated as the difference between the absolutarker detected when actually there is no trace marker,
vehicle heading direction);, derived by the laser position- was less than 1%. Conversely, false negatives arise when
measurement system, and the vehicle headingneasured the trace marker is present in the image but the system
by the onboard compass is not able to detect it at all and does not return any
information. The percentage of false negatives was less than

W = arctan(g) (5) 3%. Finally, misidentifications refer to cases in which a
* trace marker is present in the image but the system fails
By =t =9 (6) in recognizing it properly and returns wrong information. In

The FTrace system was tested over a total of 5016 imaga# tests, misidentifications were less than 2%. The system
showing the results collected in Table Il for both sets oProved to be robust to disturbances due to heavy shadowing,

experiments. The percentage of false positives, i.e. a traBen-uniform terrain texture, and the presence of overlapping
imprints.

In order to assess the effectiveness of the FTrace system
in estimating lateral drift, a typical test on non-flat terrain
is presented. In this experiment, EI-Dorado was commanded
to move straight forward, driving sideways on a sandy slope
resulting in a total travel distance of about D=7 m. Figure 7
shows the position of El-Dorado and the imprints produced
by its wheels at the end of the run, from a front and rear
view, respectively. In Fig. 8, the slip angle, derived from
the FTrace system using (2), is compared with the ground-
truth data. The two curves show good agreement with a root
mean square (RMS) error less thade. The FTrace system
detected effectively the onset of sideslip and its successive
trend throughout the experiment. Two different stages can be
distinguished during the test. In the first stage referring to
the first 60 seconds, the robot followed its intended straight
path without any lateral drift. This is demonstrated by the
two wheel traces parallel to the direction of motion. The
second stage marks the onset of sideslip caused by the
external lateral force acting on the rover due to the transverse
inclination of the terrain. As direct consequence, a variation
in the angle of inclination of the wheel traces is produced
attesting to the occurrence of sideslip (see also Fig. 7). Since
Fig. 6. Application of the FTrace system to a sample image: (a) O”Qi”%cre accuracy of the FTrace method was consistent in all the
scene, (b) and (c) application of edge detection and Hough transform, ( %(periments of both set A and B, this result can be regarded

output of the FTrace system. Note that for this image no sideslip was e
detected as of general significance.

(@) (b)

(© (d)
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Fig. 7. Traces produced by the wheels of the rover at the end of the
traverse of a sandy slope: (a) front view, (b) rear view [6]

[7]
IV. CONCLUSIONS

[8]
In this paper, a novel method for sideslip estimation
was presented based on observing the wheel traces | @
by a robot during its traverse of sandy terrains. A visua
algorithm was proposed to estimate the pose of the tracBgl
using Hough transform enhanced by fuzzy reasoning. The
important geometrical data of the scene are combined baseg|
on the physical understanding of the problem providing
accuracy and robustness. Comprehensive experiments in
field demonstrated the overall effectiveness of the proposed
FTrace method for slip angle estimation on sandy terrain
with a percentage of failed observations less than 2% arﬂfi4]
an accuracy of 1.4deg. The FTrace module could be
effectively employed to enhance the mobility of robots on
highly challenging terrains by integration with conventional

control and localization algorithm.
[16]
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Fig. 8. Effectiveness of the FTrace system in estimating slip angle during
sideways traverse of a sandy slope
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