
  

  

Abstract—Identifying planetary soil parameters is not only an 
important scientific goal, but also necessary for exploration 
rover to optimize its control strategy and realize high-fidelity 
simulation. An improved wheel-soil interaction mechanics 
model is introduced, and it is then simplified by linearizing the 
normal stress and shearing stress to derive closed-form 
analytical equations. Eight unknown soil parameters are 
divided into three groups. The highly complicated coupled 
equations, each of which includes all the unknown soil 
parameters, are then decoupled. Each decoupled equation 
contains one or two groups of soil parameters, making it feasible 
to make a step-by-step identification of all the unknown 
parameters that characterize the soil. Wheel-soil interaction 
experiments were performed for six kinds of wheels with 
different dimensions and wheel lugs on simulated planetary soil. 
Soil parameters are identified with the measured data to 
validate the method, which are then used to predict wheel-soil 
interaction forces and torque, with a less than 10% margin of 
error. The improved model, decoupled analytical model, and 
soil-characterizing method can play important roles in the 
development of both the planetary exploration rovers and the 
terrestrial vehicles. 

I. INTRODUCTION 
CIENTISTS have long been interested in the soil mechanics 
properties of planetary rovers, both to improve our 

scientific knowledge of the geological properties of planetary 
soil and to provide engineering knowledge required to 
perform planetary surface exploration or future settlement 
activities.  

During the lunar exploration missions carried out in the 
1970s, the U.S.A. and the former Soviet Union brought soil 
samples back to the earth and conducted research on their 
properties [1]. Due to a lack of samples obtained from a return 
mission, the more recent exploration of Mars and the moon 
has required soil research to be conducted remotely. 
Compared to the research on samples that have been brought 
back, the in-situ research on soil mechanics properties is low 
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in cost, and it can conveniently be conducted at any time or 
place with little influence on the original mechanical 
properties of the soil.  

Viking Lander performed soil experiments by scraping the 
soil to dig trenches with a surface sampling arm. The internal 
cohesion and friction angles of different types of soils (drift, 
crusty and cloddy) were estimated [2]. W. Hong developed a 
system for estimating soil properties in-situ using a 
manipulator arm, including soil mechanics modeling and 
estimation techniques [3]. Researchers from the Sojourner 
rover team conducted experiments by driving one wheel on 
the rover while keeping the other wheels stationary. The soil 
appeared to show little or no cohesion, and the friction angles 
were found to be between 32° and 41° [4]. Mechanical 
experiments were also performed during NASA Mars 
Exploration Rover Missions [5]. The Spirit and Opportunity 
rovers researched the soil properties of Meridiani Planum [6] 
and Gusev Crater [7], respectively, by excavating the 
subsurface soil with wheels for in-situ observation, studying 
the rock mechanical properties with a rock abrasion tool and 
analyzing the wheel track patterns, depths, and wheel 
slippage dynamics during traverses. 

Wheel-soil interaction terramechanics models consist of 
not only the internal cohesion and friction angle of the soil but 
also many other parameters such as the cohesive modulus, 
friction modulus, and sinkage exponent, which can express 
the pressure bearing capability of soil [8]. This makes it 
possible to characterize planetary soil more comprehensively 
by estimating soil parameters according to the forces and 
moments that act upon the wheel. In addition, for future 
rover-based exploration missions conducted on more 
challenging terrains, such as the MSL and ExoMars missions 
for exploring Mars and the SELENE and Chang’e lunar rover 
plans, the rover must know the variations in soil parameters in 
time to optimize its control and planning strategy. This 
enables it to maximize wheel traction or minimize power 
consumption [9] as well as update the parameters for rover 
simulation on Earth, a boon to the successful achievement of 
scientific goals. Two important issues, however, must first be 
resolved in regard to wheel-soil interaction mechanics based 
parameter identification. One issue is the development of a 
high-fidelity wheel-soil interaction terramechanics model for 
planetary rovers. The other issue is to simplify the relevant 
complex coupled nonlinear integrated equations in order to 
obtain simple closed-form equations. 

The classical terramechanics models for terrestrial vehicles 
are usually used for planetary rovers [8], [10], [11]. K. 
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Iagnemma et al. linearized the Wong-Reece normal stress 
equation and Janosi shearing stress equation in order to obtain 
a closed-form formula, and then, they applied a linear 
least-squares estimator in order to estimate the internal 
cohesion and friction angle online by setting the shearing 
deformation modulus to a typical value [12]. This method is 
used to estimate the terrain for planetary rovers so that they 
can adapt their control strategies and maximize effectiveness 
[13]. S. Hutangkabodee et al. developed a method to identify 
the internal friction angle, shearing deformation modulus, and 
lumped pressure sinkage coefficient (cohesive sinkage 
modulus and frictional sinkage modulus), while the internal 
cohesion was fixed to 3 Kpa. The composite Simpson’s rule 
was employed to obtain an approximated form model [14]. 

The fidelity of wheel-soil interaction models can determine 
the precision of parameter identification. An improved model 
for calculating the interaction mechanics was developed that 
took into account the slip-sinkage and lug effect, which gave 
considerable precision to the prediction of both the mechanics 
and the entire sinkage of the wheel [15], a subject that is 
introduced in Section II. Section III deduces a decoupled 
closed-form analytical formula, which is then used to predict 
eight soil parameters in Section IV. Section V describes the 
experimental study of wheel-soil interaction mechanics; the 
data obtained are used for parameter identification to validate 
the above algorithm in Section VI. 

II. WHEEL-SOIL INTERACTION MECHANICS MODEL  

A. General model for lugged planetary wheel 
Planetary rovers are usually installed with lugs of a certain 

height to improve their tractive ability in deformable soil. Fig. 
1 shows a diagram of lugged wheel-soil interaction 
mechanics [12], where z is the wheel sinkage; θ1, the entrance 
angle at which the wheel begins to contact the soil; θ2, the exit 
angle at which the wheel looses contact with the soil; θm, the 
angle of maximum stress; 1θ ′ , the angle where the soil begins 
to deform; W, the vertical load of the wheel; DP, the 
resistance provided by forward movement, which is equal to 
the drawbar pull; T, the driving torque of the motor; r, the 

wheel radius; h, the height of the lugs; v, the vehicle velocity; 
and ω, the angular velocity of the wheel. The soil interacts 
with the wheel in the form of continuous normal stress σ and 
shearing stress τ, which are divided into a forward part (σ1, τ1) 
and a rear part (σ2, τ2). 

For a steadily moving wheel, force balance equations can 
be expressed by integrating the stresses as follows: 
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where b is the width of the wheel, rs is the equivalent shearing 
radius, i.e., the average radius where the shearing between the 
moving soil adhered to the wheel and static soil takes place: 

(0 1)s s sr r hλ λ= + ≤ ≤                           (2) 
The lug coefficient λs in (2) is related to the internal friction 
angle of the soil and the number of lugs, and it is set to 0.5 for 
the purpose of simplification [16]. 

B. Normal stress and shearing stress distribution 
Let s denote the slip ratio, an important state variable of 

wheel soil interaction. It is defined with rs [16]: 
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The normal stress equation is improved on the basis of the 
Wong-Reece model [15]: 
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where kc is the cohesive modulus of the soil, kφ is the frictional 
modulus, and N is the improved soil sinkage exponent. N is 
the linear function of the slip ratio: 

0 1N n n s= +                                                                          (5) 
where n0 and n1 are coefficients for calculating N. Equation (5) 
is deduced to change the constant sinkage exponent n with the 
slip ratio to predict all sinkage of the wheel, including severe 
slip sinkage [17], which cannot be reflected well by the 
conventional model. The sinkage exponent N  is an increasing 
function of the slip ratio, while the normal stress is a 
decreasing function of N. Therefore, the entrance angle and 
sinkage increase as the slip ratio increases. The linearized 
method is effective in predicting wheel slip sinkage.  

Angles θ1, θ2, and θm are functions of wheel sinkage z and 
coefficients c1 c2 and c3: 

1 acos[( ) / ]r z rθ = −                                                             (6) 

1 2 1( )m c c sθ θ= +                                                                   (7) 
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Fig.1 Diagram of lugged wheel-soil interaction mechanics 



  

2 3 1cθ θ=                                                                               (8) 
The leaving angle θ2 is usually simplified as zero, as is the 
parameter c3. 

The Janosi equation for calculating shearing stress was also 
improved [15]: 
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c
r s k
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= + ×
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where c is the cohesion of the soil, φ is the internal friction 
angle, and k is the shearing deformation modulus.  

1 acos ( ) / jr z Rθ ⎡ ⎤′ = −⎣ ⎦                                                       (10) 
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If the entrance angle is θ1 and wheel sinkage is small 
(indicated by a slip ratio less than approximately 0.15), soil 
displacement can be considered as starting from angle 

1θ ′ calculated by the maximum radius r + h (as shown in Fig. 
1). If wheel sinkage is great, the next lug cannot contact the 
soil immediately after the former one completely enters the 
soil. The interaction between lug and soil is quite a complex 
process. The radius Rj for calculating 1θ ′  is deduced in order 
to approximate the effect of that process. Transitional slip 
ratios sj1 and sj2 are adopted because wheel sinkage is related 
to the slip ratio [15]. If the slip ratio is larger than 0.5, the 
influence of wheel lugs on the starting angle of soil 
deformation can be ignored. According to the above analysis, 
the parameters sj1 and sj2 are 0.15 and 0.5 respectively.  

Equations (5) and (10) contribute most to the improvement 
of the model, as they reflect wheel slip-sinkage phenomena 
and the lug effect quite well. More details can be found in 
[15].  

Apart from λs, c3, sj1, and sj2, which have been determined, 
there remain nine unknown soil parameters: c1, c2, kc, kφ, n0, 
n1, c, φ, and k.  

III. DECOUPLED ANALYTICAL MODEL DERIVATION 

A. Model Analysis 
The wheel-soil interaction model in (1) includes three 

equations. Given s and θ1, W, DP and T can be calculated if 
the soil parameters are known. Figure 2 shows the process. 
Inversely, if W, DP, T, and θ1 of different slip ratios are 
measured, it is possible to identify the unknown soil 
parameters by means of the data fitting method. However, the 
equations are highly coupled, and each of them contains all 
the unknown parameters. It is not feasible, therefore, to 
identify these nine parameters simultaneously by means of 
the measured data, due to the complexity and high 
nonlinearity of the model, which can easily lead to local 
convergence. 

Let Ks = Kc/b + Kφ denote the wheel-soil interaction 
sinkage exponent, i.e., the lumped pressure-sinkage 
coefficient in [14]. For a wheel of a certain width b, the 
parameter Ks is constant. Ks will therefore replace kc and kφ, 

which are not feasible and don’t need to be separately 
identified. The parameters can be divided into three groups: 
PI = {c1, c2,}, PII = {Ks, n0, n1}, PIII = {c, φ, k}, which are 
directly related to angles of θm and θ2, normal stress and 
shearing stress, respectively.  
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Fig. 2 Diagram of coupled wheel-soil interaction mechanics model  

If the equations can be decoupled to separate the variables 
of three groups, it will become easier, and feasible, to identify 
all the unknown parameters. 

B. Stress Simplification 
Let σm denote the maximum normal stress, and τm denote 

the maximum shearing stress: 
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The normal stress and shearing stress can be simplified by 
means of the linearized method [12]: 
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  The literature [12] has verified the linearized method for 
soils with a sinkage exponent in the range of 0.5 to 1.6. Soil 
exponent sinkage influences the simplification error. Six 
kinds of wheels (Section V) with wheel-soil interaction 
exponent coefficients n0 and n1 [15] close to the identified 
value (Section VI) are used to check the error. Three groups 
of typical values are selected: θ1 = 35°, s = 0.4; θ1 = 25°, s = 
0.2; θ1 = 15°, s = 0, which are comparable to the experimental 
results of wheel-soil interaction presented in Section V. The 
results of calculations show that the maximum relative error 
is larger for a lower slip ratio because the sinkage exponent is 
smaller. The maximum simplification error for both normal 
stress and shearing stress is approximately 15%.  

C. Closed-form analytical equations 
By substituting (14) and (15) for (1) and integrating the 

equations, one arrives at: 
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A, B and, C are functions of entrance angle θ1 and 
parameters of PI, X is related to parameters of PI and PII, while 



  

Y is related to all parameters. It is clear that W, DP and T are 
functions of all the soil parameters. 

D. Decoupling of equations 
According to (16),  

( ) / =( ) /X W BY A AY DP B= − −                                          (17) 
= /( )sY T r C                                                                         (18) 

By substituting (17) and (18) into (16), one obtains: 
2 2

=
s

W BY A B BDP AY B T W
A r AC A
− +

− = −                        (19) 

= / ( )= / ( )s m sW AX BT r C rbA BT r Cσ+ +                         (20) 
According to (20), 
= /( )- /( )m sW rbA BT rr bACσ                                                (21) 

Let 1 11 exp{ [( ) (1 )(sin sin )] / )}s m mD r s kθ θ θ θ′ ′= − − − − − − . 
Substitute Y = rsbτm, Eqs. (13) and (21) in (16), and one 
obtains: 

2= { [ /( )- /( )]tan }s sT r CD bc W rA BT rr AC ϕ+                         (22) 
The explicit formulation of T is: 

2= [ tan /( )]/[1+ tan /( )]s sT r CD bc W rA r BD rAϕ ϕ+                    (23) 
Equations (19), (20) and (23) are decoupled equations. DP 

is the function of the parameters in PI; W is the function of the 
parameters in PI and PII; while T is the function of the 
parameters in PI and PIII. 

IV. PARAMETER IDENTIFICATION METHOD 

A. Identifying c1 and c2 
According to (19), DP is the function of W, T, θ1, s and the 

unknown parameters c1 and c2. c1 and c2 can be identified if 
the other parameters have been measured, as shown in Fig. 3. 
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Fig.3 Diagram for identifying c1 and c2 

W, T, s, and θ1 of the rover can be measured or estimated 
[12]. The entrance angle θ1 can be measured by visual means 
or by kinematic analysis of the rover’s suspension. The 
vertical load W can be estimated by quasi-static force analysis. 
The torque T can be estimated by reference to the current of 
the motor as measured by its driver. The wheel angular speed 
ω can be measured with an encoder. The wheel longitudinal 
velocity v can be measured in terms of inertial measurement 
units (IMU) or visual odometry. Knowing v and ω, the slip 
ratio can be estimated with (3). The drawbar pull can be 
measured by installing a force sensor on the wheel, but this 
may cause extra complexity and expense. Quasi-static 
analysis can also help in estimating the drawbar pull. The slip 
ratio of a wheel can be changed by modulating the velocity of 
different wheels.  

B. Identifying Ks, n0 and n1 
According to (12) and (20), 

0 1 0 1
1= [ (cos cos ) ] /( )n n s n n s

N s m sF rbA K r BT r Cθ θ+ +− +         (24) 
As shown in Fig. 4, three parameters Ks, n0 and n1 can be 

identified according to the measured θ1, W, T, s and identified 
c1, c2.  
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Fig.4 Diagram for identifying Ks, n0 and n1 

C. Identifying c, φ and k 
By substituting the values of D in (23), one obtains: 
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            (25) 

As shown in Fig. 5, parameters c, φ, and k can be identified 
with the measured θ1, W, T, and s with (25).  
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Fig.5 Diagram for identifying c, φ and k 

D. Parameter identification implementation 
The least square method is adopted to identify the soil 

parameters with the lsqcurvefit() function of Matlab. Let x 
denote the vector of identified parameters, xdata denote slip 
ratio as the input data, ydata denote the measured DP, W and 
T, m denote the length of xdata and ydata, and F denote the 
function of (19), (24) and (25) respectively. The identifying 
process seeks to find the vector x that best fits (26): 
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V. EXPERIMENTAL STUDY OF WHEEL-SOIL INTERACTION 

A.  Experimental equipment and materials 
Figure 6 shows the wheel-soil interaction testbed that was 
used to perform the experiments. The testbed consists of three 
motors and various related sensors. The driving motor can 
cause the wheel to move forward; the carriage motor is used 
together with a conveyance belt to imitate the influence of the 
vehicle body on the wheel and to create various slip ratios; 
and the steering motor is used for research into steering. 
Wheel sinkage z is measured by a high precision sliding 
resistance displacement sensor; T, DP and W can be measured 
with a torque sensor and F/T sensor. 

The design of the experimental wheels was based upon 
those in recent planetary rovers (Fig. 7). Six types of cylindri-  



  

     
Fig.6 Wheel-soil interaction test bed and experimental wheel 
cal metal wheels with different radii, widths and lugs were 
used, as shown in Table I, where nL is the number of wheel 
lugs. 

TABLE I 
PARAMETERS OF EXPERIMENTAL WHEELS 

Test No. Wheel code r(mm) b(mm) h(mm) nL 
T1 Wh11 135 165 15 24
T2 Wh12 135 165 10 24
T3 Wh21 135 110 15 24
T4 Wh22 135 110 10 24
T5 Wh31 157.35 165 15 30
T6 Wh32 157.35 165 10 30

The literature shows that the mechanical properties of dry 
loose sand are similar to those of planetary soil, so that such 
sand is usually employed as planetary soil simulant. The 
simulant used in this study was made from soft sand after 
removal of impurities, sieving, ventilating and drying. The 
soil parameters measured by means of plate sinkage and 
shearing experiments are sinkage exponent n = 1.10, cohesive 
modulus of sinkage kc = 15.6 Kpa/mn–1, frictional modulus of 
sinkage kφ = 2407.4 KPa/mn; internal cohesion of the soil c = 
251 Pa, and friction angle φ = 31.9° [15].  

B. Experiment Setup 
The forward velocity of wheel was 10 mm/s. The 

experimental slip ratios were 0, (0.05), 0.1, 0.2, 0.3, 0.4, (0.5), 
and 0.6. The slip ratios were calculated with λs = 1, and the 
values were amended with the shearing radius rs [16]. The 
vertical wheel load was approximately 80 N. All the setting 
values were comparable to those of planetary rovers.  

C. Results 
Hundreds of raw data could be obtained for a single test. 

The measured data fluctuate periodically in correspondence 
with the entrance and exit of the wheel lugs. The results of the 
experiment show that the mean values of several tests are 
almost the same, regardless of fluctuations in the data. The 
wheel interacted with the soil to achieve a steady state after it 
was kept running for several seconds. The steady data were 
used in order to calculate the mean values of z, DP, W and T 
after filtering. The entrance angles were then calculated with 
the wheel sinkage. The curves of θ1, DP, W, and T versus slip 
ratio were obtained for the 6 kinds of wheels used. 

VI. EXPERIMENTAL VERIFICATION 

A. Parameter identification result and discussion 
Experimental data were used to identify the soil parameters. 

Table II shows the results (the unit of Ks is Kpa/mN) and Table 

III shows the data fitting error and calculation time.  
The data fitting result of Wh11 is plotted in Fig. 7 (M1). 

The relative data fitting error values for DP, W and T are 
smaller than 4.13%. The computation time for fitting DP and 
W is smaller than 50 ms on a 2G Hz laptop PC, but it 
sometimes takes about 150 ms to fit T due to the complexity  
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Fig.7 Data fitting result for DP and W of Wh11 
of (25). The calculation time can be decreased by optimizing 
the codes and further simplifying (25). In any case, it can be 
concluded that this method is suitable for online planetary soil 
parameter identification.  

The largest error for identified φ is only 3.1°. The error of c 
is also very small as compared to the shearing stress; a 
difference of only several Kpa. Parameter k has an acceptable 
range from 9.7 mm to 13.1 mm. Parameter Ks is sensitive to 
the initial value and the identified result is quite close to the 
initial value 2500 Kpa/mN, meaning that only n0 and n1 are 
sufficient for fitting the vertical load. Ks could be fixed to the 
value of estimated soil frictional modulus kφ, as kc is so small 
as to be negligible [12]. For example, for lunar soil, Ks can be 
set to kφ = 820 Kpa/mN by ignoring kc = 1.4 Kpa/mN+1. The 
bearing performance of soil could be quite well characterized 
by the identified n0 and n1. The range of n0 + n1s for the 
experimental planetary soil stimulant is from 0.73 (W31, s = 0) 
to 2.10 (W11, s = 1), from which wheel sinkage into the soil 
can be estimated. 

Parameter c1 is between 0.37 and 0.53, while c2 is between 
–0.38 and –0.04. Their values exhibit a wide range, but the 

TABLE II 
IDENTIFIED SOIL PARAMETERS  

Wheel
code W11 W12 W21 W22 W31 W32 

c1 0.504 0.381 0.531 0.415 0.486 0.371
–c2 0.377 0.228 0.299 0.038 0.308 0.090
Ks 2498.9 2499.2 2499.2 2499.6 2515.6 2499.2
n0 0.767 0.864 0.820 0.915 0.727 0.806
n1 1.336 1.094 1.136 0.840 1.332 1.148

c (Pa) 95.5 199.0 284.8 239.1 204.6 217.1
φ (°) 32.2 29.1 31.3 29.4 30.8 28.8 

K(mm) 13.1 11.5 12.7 10.6 11.2 9.7 

TABLE III 
DATA FITTING ERROR AND CALCULATION TIME 

Relative error Calculation time Wheel
code DP(%) W(%) T(%) DP(ms) W(ms) T(ms)
W11 2.88 1.62 3.86 19.83 21.864 103.83
W12 3.14 1.05 1.03 15.44 22.752 12.73 
W21 2.20 0.70 1.30 21.61 23.931 161.63
W22 2.68 0.94 0.56 15.98 21.455 144.97
W31 4.13 3.60 3.70 19.88 45.598 50.60 
W32 3.70 1.07 2.16 13.99 21.675 13.52 



  

other identified parameters are not obviously influenced by 
this. This means that wheel-soil interaction mechanics are not 
sensitive to c1 and c2. One can therefore assign typical values 
of c1 and c2 to the soil even if the values of DP are unknown. 
If we let c1 = 0.5 and c2 = 0, the drawbar pull can be fitted with 
an acceptable maximum relative error of 8.57% (M2 in Fig. 7 
(a)), the data fitting error or W and T, and the identification 
results of the other parameters are not significantly 
influenced.  

If a constant sinkage exponent is used instead of N in (5), 
the identification results for Wh11 are Ks = 14.2 Kpa/mn and n 
= 0 (lower limit). The fitting errors of W are quite large (M3 in 
Fig.7 (b)). Extending the limits of n, the best data fitting result 
for Ks is from 1.32 Kpa/mn (Wh11) to 2.66 Kpa/mn (Wh11), n 
is from –0.54 (Wh11) to –0.50 (Wh31), which is far from the 
soil parameters. If (10) is not used, i.e., the influence of lugs 
on the starting angle of soil deformation is ignored, then the 
identified c ranges from 448 Pa (Wh12) to 3071 Pa (Wh11), φ 
from 15.7° (Wh11) to 26.2° (Wh12), and k from 1.3 mm 
(Wh31) to 5.5 mm (Wh12). These results, however, are 
untenable, and the fitting error of T reaches 10.58% (Wh31). 

B. Mechanics prediction with identified parameters 
The prediction of wheel-soil interaction mechanics by 

means of the identified parameters can be applied to rover 
design, control strategy optimization, and dynamics 
simulation.  

The process for mechanics prediction is as follows. (1) 
Given the vertical load Wa (the average value of measured W, 
80~85N), slip ratio s, and the initial value of the entrance 
angle. (2) Calculate σm and τm with (12) and (13). (3) 
Calculate W with (16). (4) If |W – Wa| > δ (error tolerance), 
change θ1 and return to (2); or else, calculate z. (5) Calculate 
DP and T with (16). 

Table IV shows the relative error and calculation time. The 
maximum relative error for z, DP and T are 1.89%, 9.09% and 
4.28%, respectively. The calculation time for z is less than 30 
ms and that for DP and T is about 30 μs. These are feasible 
values for real-time application. 

VII. CONCLUSION 
The improved model is effective and superior to the 

original model. The closed-form analytical equations for 
calculating DP, W, and T are suitable for real-time 
applications because of their high precision and short 
calculation time. It is possible to characterize planetary soil 
more comprehensively with the decoupled analytical model 
onboard, which can help us better understand planetary soil. 
The methods and results developed in this study can also be 
extended to terrestrial wheeled vehicles and mobile robots. 
Our results also suggest that a new kind of soil parameter 
measurement meter based on wheel-soil interaction 
mechanics should be developed. 
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TABLE IV 
WHEEL-SOIL INTERACTION MECHANICS PREDICTION ERROR AND TIME 

Relative error Calculation time Wheel
code z (%) DP (%) T (%) z (ms) DP and T (μs) 
W11 1.15 4.97 2.20 25.313 33 
W12 1.71 5.46 1.73 28.872 31 
W21 1.09 5.44 3.00 27.771 31 
W22 1.13 9.09 2.54 27.553 33 
W31 1.89 8.94 4.28 29.640 33 
W32 0.79 7.58 1.37 27.274 31 


