
  

  

Abstract—Numerical simulation analysis of the wheeled 
mobile robots’ motion is significant for both their R&D and 
control phases, especially due to the recent increase in the 
number of planetary exploration missions. Using the 
position/orientation of the rover body, and all the joint angles as 
generalized coordinates, the Jacobian matrices and recursive 
dynamics model are derived. Terramechanics models for 
calculating the forces and moments acted on the wheel by the 
deformable soil are introduced, considering the effect of normal 
force. A rough terrain modeling method is developed for 
estimating the wheel-soil interaction area, wheel sinkage and the 
terminal coordinate. A simulation program including the above 
techniques is developed with Matlab and SpaceDyn Toolbox. 
Experimental results of a 4-wheeled mobile robot moving on 
Toyoura soft sand verifies the fidelity of the simulation. A 
simulation example of a robot moving on random rough terrain 
is also presented. 

I. INTRODUCTION 
HE Sojourner and MER rovers have proved the 
effectiveness of wheeled mobile robots (WMRs) in 

planetary exploration missions. Future missions will require 
the robots to traverse over more challenging deformable 
rough terrain.  

Dynamics simulation plays important roles in both the 
R&D phase and the operation phase of WMRs [1]. During the 
R&D phase of a WMR, dynamics simulations can be used for 
mechanical design/evaluation/optimization, mobility 
performance analysis, control strategy validation, etc. While 
for the operation phase, dynamics simulation can be used to 
support 3D predictive display for successive tele-operation 
(such as a lunar rover) or validate commands sequence for 
supervision operation (such as a Mars rover).  

The dynamics of WMRs is primarily composed of two 
parts: the multi-rigid-body dynamics of vehicle and 
wheel-soil interaction terramechanics, which is intricate but 
important for improving the fidelity of simulation. Some 
dynamics simulation platforms have been developed based on 
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conventional terrestrial vehicle terramechanics. NASA’s Jet 
Propulsion Laboratory (JPL) developed Rover Analysis, 
Modeling and Simulation (ROAMS) system for real-time 
simulation of planetary rovers [2-3], which uses a single 
degree of freedom Hunt-Crossley compliance system at each 
wheel to compute the force in the normal direction; and a two 
degree of freedom compliance system to compute tangent 
forces with a linear spring-damper model [4]. Based on 
Bekker’s classical terramechanics theory, a computational 
framework called Locomotion Synthesis (LocSyn) for mobile 
robots was developed, which combines a simulation for the 
performance prediction and optimization of configuration 
parameters [5]. A set of tools has been developed by ESA 
named RCET (Rover Chassis Evaluation Tools) to support 
design, selection and optimization of space exploration rovers. 
It consists of a tractive prediction module (TPM) that deals 
with the wheel terrain interaction based on traditional Bekker 
terramechanics theory [6]. The Rover Performance 
Evaluation Tool (RPET) is a systematic tool for rover chassis 
evaluation via application of Bekker theory developed by 
Surrey Space Center and DLR [7]. RCAST, which combines 
a rigid multi-body dynamics engine available in Matlab with 
the AS2TM wheel-soil interaction module, was developed to 
optimize the ExoMars Rover mobility for the evaluation of 
locomotion subsystem designs [8].  

Due to the differences between WMRs and terrestrial 
vehicles in physical dimension, wheel shape, payload, terrain, 
running velocity, control mode, etc., it is necessary to 
examine the applicability of the conventional terramechanics 
theory and improve it aiming at WMRs. Yoshida et al from 
SRL (Space Robotics Laboratory), Tohoku university, have 
been researching on terramechanics for planetary exploration 
robots [9]. The conventional Wong-Reece terramechanics 
formula was employed to derive an improved practical model 
for calculating drawbar pull [10]. In order to analyze the 
steering performance of a wheel and a rover, the lateral force 
characteristics of a driving wheel was modeled [11]. Based on 
the research results of terramechanics models, Ishigami et al 
built all-wheel dynamics model and analyzed the motion 
dynamics for wheeled robots [12]. The virtual simulation 
platform was then used for motion analysis, control strategy 
verification and path evaluation [13].  

This study is an extension of the simulation platform of 
SRL. A generalized dynamics model for mobile robots 
considering all the external forces and moments acted on the 
wheels is deduced in Section II. A high-fidelity moving 
forward/backward terramechanics model considering wheel 
lug effect and slip-sinkage [14], as well as a steering model, 
are introduced in Section III. Section IV describes the method 
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of estimating wheel-soil contact area on deformable soil, 
calculating wheel sinkage and terminal mechanics 
transformation matrix. Section V presents the simulation 
implementation, experimental validation and an example 
based on deformable rough terrain.  

II. GENERALIZED RECURSIVE DYNAMICS MODELING  

A. Recursive Kinematics and Jacobian Matrices 

If 1 2 3[ ]Ta a a=a ， 1 2 3[ ]Tb b b=b ，define 
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a , then × =a b ab , T× = − =b a ab a b . 

Let 1 2[ ]
v

T
nq q q=q denote the joint variables, 

where nv is the number of joints. The WMRs are articulated 
multi-body systems with moving base and nw end-points 
(wheels). Let [ ]T

s l m n sq q q q=q denote a branch 
from the rover body to a wheel, ns denote the number of 
elements in sq . Replace the joint number l, m, n, …, s of the 
branch with 1, 2, 3 …, ns, as shown in Fig. 1, which also 
shows the initial coordinate {ΣI}, coordinates {Σi} attached to 
link i (i=l, m, n, …, s) and related vectors, where pi is the 
position vector of link i, ri, the position vector of the centroid 
of link i, cij, the link vector from link i to joint j, lij=pj-pi, link 
vector from joint i to joint j, lie, vector from joint i to 
end-point e.  
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Fig. 1 Coordinates and vectors from rover body to a wheel 

The position vector of end-point pe is:  
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The derivative of Eq. (1) is: 
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where 1 2
1 1 1 1 2 2 2 2[ ]r
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n
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is a 3×nv matrix, and I
i i=A A  is the transformation matrix 

from {Σi} to {ΣI}[15], [0 0 1]i T
i =Z , because the z axis is 

set to coincide with the joint displacement axis, ijL  is an 
element of matrix 

v vn n×L  to indicate whether the link j is on 

the access from link 0 to link i ( ijL =1) or not ( ijL =0), ieP  is 

the vector from origin of {Σi} to the end point. 

0[ ]T
BTe er=J E P  is a 3×6 matrix, where 0 0er e= −P p r . 
The angular velocity of the end-point is: 
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3×ns matrix and [0 ]BRe =J E is a 3×6 matrix. 
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J JJ J J J J , be the 6×(6+nv) 

Jacobian matrix to map the generalized velocity to the 

end-point; ( )0 0

TT T T⎡ ⎤= ⎣ ⎦Φ v ω q , a vector with (6+nv) 

elements, i.e., the linear velocity and angular velocity of the 
body, and the joint velocity. Let aeX and aeJ  denote the 
velocities of all the wheel-soil interaction points and the 
corresponding Jacobian matrix:  
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which are 6 1wn ×  vector and 6 ( 6)w vn n× +  matrix, 
respectively, one obtains: 

ae ae=X J Φ                                  (4) 
The same method is used to deduce the Jacobian matrix of 

mapping the velocity from the generalized coordinates to the 
link centroid, and Eq. (5) is obtained:  

a a=X J Φ                                        (5) 
where aX ( 6 1vn × ) is the velocity vector of all the centroid, 
Ja ( 6 ( 6)v vn n× + ), the Jacobian matrix. In Eq. (5), 
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is a 6×(6+nv) matrix. 0
T

BTi i⎡ ⎤= ⎣ ⎦J E r , [ ]0BRi =J E , both 

are 3×6 matrices; 1 2
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both of which are 3 vn× matrices. 

B. Generalized Dynamics Model 
Substitute (5) into the kinetic energy equation:  

0

1 1( )
2 2

vn
T T T
i i i i i i sys

i
T m

=

= + =∑ ω I ω v v Φ H Φ         (6) 

where sysH  is the ( 6) ( 6)v vn n+ × +  system generalized 
inertia matrix [15]: 
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where Ma is the overall mass of the robot, 0og g= −r r r , 
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According to the Lagrange function: 
( ) + ( , ) + ( ) ( )sys sys sys= +F H Φ Φ C Φ Φ Φ f Φ G Φ       (8) 

where C is an ( 6) ( 6)v vn n+ × +  stiffness matrix describing 
the Coriolis and centripetal effects, which are proportional to 

2
iq  and i jq q , respectively, f, ( 6) 1vn + ×  matrix that 

describes viscous and coulomb friction, negligible for 
rigid-body dynamics system, G, ( 6) 1vn + ×  gyroscopic 
vector reflecting the gravity loading, Fsys, the vector of 
generalized forces: 

T
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where N  is an ( 6) 1vn + ×  matrix including the forces ( 0F )/ 
moments ( 0M ) acted on the body, and those acted on the 
joints ( 1 2[ ]

v

T
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including the external forces ( eF ) and moments ( eM ) acted 
on the wheel by soil: 
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The dynamics equation of a wheeled mobile robot 
including wheel-soil interaction terramechanics is: 
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Let ( , ) + ( )+ ( )=C Φ Φ Φ f Φ G Φ E , the generalized 
accelerations can be calculated according to Eq. (11): 

1= ( ) 0T
sys sys ae ae

− + − =Φ H N J N E          (11) 
Let 0sys =Φ  and 0ae =N , there exists N = E. 

The Newton- Euler equations are:  

{ i i i
i i i i i i

m=
= + ×

F v
N I ω ω I ω                     (12) 

According to d'Alembert principle, if and im acted on 
link i by joint i is:  
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where ( )P iλ  is 1 for a prismatic joint and 0 for rotational 
joint. The generalized force/moment of link i is: 
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Forces and moments acted on the body are: 
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where S is the incidence matrix to find the upper connection 
of a link, S0j is a flag vector to indicate whether j has a 
connection with the body, Sei is to indicate whether i is an end 
point. 

Let the accelerations of all the generalized coordinates, and 
the external forces/moments be zero, one can obtain E 
according to Eqs. (14) and (15). 

III. WHEEL-SOIL INTERACTION TERRAMECHANICS MODELS 
Each wheel is applied three forces and three moments by 

the soil, as shown in Fig. 4. The normal force FN can sustain 
the wheel. The cohesion and the shearing of the soil can 
generate a resistance moment MR and a tractive force; the 
resistance force is caused by the soil as the wheel sinks into it; 
the composition of the tractive force and resistance force is 
called drawbar pull FDP, which is the effective force of 
driving a wheel. While a wheel is steering or there exists a 
slip angle, there will be side force FS, steering resistance 
moment MS and overturning moment MO acted on the wheel.  

A. Driving model  
Fig. 2 shows the diagram of lugged wheel-soil interaction 

mechanics [15], where z is the wheel sinkage; θ1, the entrance 
angle at which the wheel begins to contact the soil; θ2, the exit 
angle at which the wheel looses contact with the soil; θm, the 
angle of maximum stress; 1θ ′ , the angle where the soil starts 
to deform; W, the vertical load of the wheel; DP, the 
resistance provided by forward motion, T, the driving torque 
of the motor; r, the wheel radius; h, the height of lugs; v, the 
vehicle velocity; and ω, the angular velocity of the wheel. 
The soil interacts with the wheel in the form of continuous 
normal stress σ and shearing stress τ, which could be 
integrated to calculate the interaction mechanics. In order to 
improve the simulation speed, a simplified closed-form 
formula [16] is adopted and improved considering the effect 
of normal force, as given by Eq. (16). 
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In Eq. (16), cP1 and cP2 are adopted to reflect the influence 
of the slip ratio on drawbar pull while θm is simplified as a 
half of θ1. cP3 and cM are parameters for compensating the 
effect of normal force, and W is the average normal force of 
the wheels; 1(cos cos )N N

m s mK rσ θ θ= − , 1 2( ) / 2C θ θ= − , 
 



  

Fig.2 Lugged wheel-soil interaction mechanics diagram 
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The newly introduced parameters are: 
1 acos[( ) / ]jr z Rθ ′ = − , /s cK k b kϕ= + , 0 1N n n s= + , 2 0θ ≈ .  

The radius Rj is a value between r and r+h for compensating 
the lug effect [17]. The soil parameters in the equations are: kc, 
cohesive modulus, kφ, frictional modulus, N, an improved soil 
sinkage exponent, c, cohesion of the soil, φ, the internal 
friction angle, and k, the shearing deformation modulus, n0 
and n1 are coefficients for calculating N, which are important 
in predicting slip-sinkage of wheels.  

B. Steering Model 
The model for calculating side force FS is the one 

introduced in Ref. [11]:  
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where / 4 / 2cX π ϕ= − , yk  is the shearing deformation 
modulus in y direction, β  is the skid angle, h is the height of 
wheel in the soil.  

The overturning moment is approximated with Eq. (20):  
O SM F r≈                                  (20) 

The steering resistance moment is considered as zero, and 
the motion of steering is simulated with kinematics method, 
as the steering torque has little influence on the motion of the 
whole rover, and the model is still under development.  

IV. ROUGH DEFORMABLE TERRAIN GEOMETRY MODELING 

A. Contact Area Calculation 
Literatures usually assume that the wheel soil interaction 

occurs at a single point for the reason of simplification, which 
may cause large errors when the robot moves in deformable 
rough terrain, and even result in failure of simulation because 
of the abrupt change of wheel sinkage and the forces. 

Calculating the interaction area of a wheel moving on the soft 
soil is important for high-fidelity simulation, based on which, 
the interaction mechanics can be predicted and transformed. 

Fig. 3 shows the interaction area of a wheel moving on 
rough terrain. The known parameters are: (xw, yw, zw), the 
position of the wheel center W; ϕw, the yaw angle of a wheel,  
and the Digital Evaluation Map (DEM) of the terrain. The 
interaction area is simplified as an inclined plane determined 
by points P1, P2 and P3, the normal vector of which is: 
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So that the equation of the inclined plane P1P2P3 is:  
1 1 1( ) ( ) ( ) 0t t tA x x B y y C z z− + − + − =               (22) 

E, the foot of perpendicular from W to plane P1P2P3, is 
located on line ( ) / ( ) / ( ) /w t w t w tx x A y y B z z C− = − = − . 
The coordinates of point E can be solved by substituting the 
line equation into Eq. (22). The length of WE is deduced:  
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Then, the wheel sinkage is determined by Eq. (24): 
z Ee r WE= = −                                  (24) 

 

 
Fig. 3 Interaction area of a wheel moving on deformable rough terrain 

Point P2 is taken as an example to show how to get the 
coordinates of points P1, P2 and P3. The wheel moving on a 
random plane can be decomposed into climbing up/down a 
slope with angle of θcl and traversing across a slope with 
inclination angle of θcr, as shown in Fig. 4. Then, the x and y 
coordinates of point P2 is: 

{ 2
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sin cos
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x x r
y y r

θ
θ θ

= +
= +                 (25) 

The coordinates of points A1, A2 and A3 are easy to find by 
referring to the DEM. zP2 can then be determined using the 
same method as calculating point E.  

B. Terminal Force Transformation Matrix 
Fig. 4 shows the forces and moments acted on the wheel by 

the soil. {Σe} and {Σw} are coordinate systems with the same 
orientation and different origins, at the end point and wheel 
center, respectively.  

xe is the is the intersection line between wheel-soil 
interaction plane and the plane with an included angle of φw 

between x axis: tan 0wx y Dϕ ′− + = . It is deduced that: 
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Fig.4 Force analysis of a wheel moving on a random slope 

Then, the vector direction of ye is: 
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θcl (θcr ) is the angle between xe (ye)and the horizontal plane, 
which can be calculated by:  
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transformation matrix from {Σe}to {ΣI} is:  
2 2
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1 2 3
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⎢ ⎥

+ +⎢ ⎥
= ⎢ ⎥

⎢ ⎥− − −⎢ ⎥
⎢ ⎥
⎣ ⎦

A     (29) 

The external forces and torques acted on the wheel-soil 
interaction point are:  

[ ]
[ ]

e w T
e e DP S N

e T
e O S R DP S

F F F
M rF M rF M

⎧ = =
⎨ = − − +⎩

F F
M

     (30) 

The equivalent forces and moments acted on the wheel 
in the initial coordinate {ΣI} are: 

=
=

e
e e e

e
e e e

⎧
⎨
⎩

F A F
M A M

                          (31) 

V. IMPLEMENTATION, VALIDATION AND EXAMPLE 

A.  Simulation Implementation 
The numerical simulation program was developed based 

on Matlab toolbox of SpaceDyn [14]. The principle diagram 
is shown in Fig. 5. Given DEM terrain, soil parameters, and 
rover model parameters, the program calculates the 
wheel-soil interaction area, predicts the external forces acted 

on the wheel, calculates the accelerations of the generalized 
coordinates based on the dynamics model, and then integrates 
them to obtain their velocities and positions based on the 
kinematics equations. 
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Fig. 5 Principle diagram of dynamics simulation 

B. Experimental Validation 
El-Dorado II, a four-wheeled mobile robot developed at 

SRL was used for validating the simulation. The robot has 
four F/T sensors to measure the wheel-soil interaction 
terramechanics. A visual odometry system was developed 
based on a telecentric camera to measure the position of the 
rover body and the slip ratio of wheels. The wheel entrance 
angles were measured with an angle meter for calculating the 
wheel sinkage. Two groups of experiments were performed. 
In group 1, the rover was applied resistance forces with 
counterweights from 0N to 60N, with a step of 10N, to 
generate different slip ratios. In group 2, the rover was 
controlled to climb up slopes from 0 to 15 degrees, with a step 
of 3 degrees, as shown in Fig. 6. 
 
 

 
Fig. 6 Slope-climbing experiment with El-Dorado II robot 
Parameters of the soft sand, which is called Toyoura, are 

identified with the experimental data: Ks=1796Kpa/mN, 
c=24.5Pa, φ=35.75°, K=10.45mm. ky is 19mm according to 
[12]. When the robot climbs up slopes, the remained 
parameters are: n0=0.66, n1=0.72, cP1=-0.379, cP2=0.616, 
cP3=-0.448, CM=0.214; while for the robot moving on flat 
terrain: n0=0.63, n1=0.72, cP1=-0.276, cP2= 0.633, cP3=-0.304, 
CM=0.354.  

The comparison of the simulation and experimental results 
are shown in Figs. 7 and 8. Not only can the motion of the 
robot be predicted with high-fidelity, which is indicated by 

F/T sensorTelecentric camera

Wheel 2

Wheel 3

Wheel 1

Wheel 4



  

the slip ratio, but also the drawbar pull, moment of resistance, 
as well as the normal force and wheel sinkage.  

  

 
Fig. 7 Simulation and experimental results for robot moving on flat terrain 
  

 
Fig. 8 Simulation and experimental results for robot climbing up slopes 

C. Simulation on Deformable Rough Terrain 
The robot was controlled to move from (0.5m, 0.5m) to 

(5m, 5m) on the random generated rough terrain shown in Fig. 
9, with an initial yaw angle of 45 degrees. While moving, the 
robot deviates from the scheduled path because of the 
inclination angle of the terrain. Fig. 10 shows the slope angles 
that wheel 4 traversed over, RPY angles of the body and q1, q2 
joint angles (q1=-q2), the slip ratios and normal forces.  

 

 
Fig. 9 Rough terrain and trajectories of wheels 
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(a) Slope angles for Wheel 4            (b) RPY, q1 and q2 angles 

 

 

 

 
(c) Slip ratios                                (d) Normal forces 

Fig. 10 Simulation results for El-Dorado II moving on deformable rough terrain 

VI. CONCLUSION AND FUTURE WORK 
The models of dynamics, wheel-soil interaction 

terramechanics and terrain presented in this paper is effective 
in simulate motion of robot moving on deformable rough 
terrain with a reasonable precision, verified by the 
experiments.  

Future work should include the development of the skid 
model and steering model, validation of simulation results on 
rough terrain, and application of it for robot, such as design 
parameter optimization and control algorithm verification. 
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