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Abstract— In the case of disasters such as earthquakes
or Nuclear/Biological/Chemical(NBC) terrorist attacks, mobile
robots, called “rescue robots,” that can work in dangerous
environments instead of rescue crews in rescue missions, can be
of great help. However, realizing such robot systems requires
many types of technologies. In particular, path planning is
an important technology that provides a mobile robot with
autonomous navigation to a target destination with collision
avoidance. To avoid evacuees, the robot should consider the
motion of people in the near future. In this research, we
propose a collision avoidance method that estimates the motions
and personal spaces of the evacuees. The method consists of
three steps: “estimation,” “conversion,” and “planning.” In the
estimation step, the future positions of evacuees are estimated
by considering their planned motions and personal spaces.
Then, in the conversion step, a time axis is added to construct a
3D time-space coordinate system. Finally, in the planning step,
a distance-time transform is applied to plan a safe 3D path from
the robot’s current position to the desired goal. The proposed
method has been implemented on our rescue robot simulator,
and some simulation experiments were conducted to verify its
usefulness.

I. INTRODUCTION

A. Background

In the case of disasters, such as earthquakes or NBC
terrorist attacks, it is very dangerous for rescue crews to
search for victims at disaster sites that have the potential for
secondary disasters. In such a situation, remote controlled
mobile robots, called “rescue robots” can be of great help
when searching inside collapsed buildings, taking the place
of the rescue crews. On the basis of such social demands,
research and development activities on rescue robots have
increased all over the world. Our research group has also
been developing rescue robots, called “Kenaf”, to explore
underground malls in an NBC terrorist attack scenario [1]. To
undertake searching missions in the above scenario, we are
currently researching on teleoperation methods, communi-
cations, locomotion methods on rough terrains, 3D mapping
technologies, and autonomous navigation methods, using this
robots as a research platform. One of the most important
technologies involves autonomous navigation because skilled
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Fig. 1. Flat underground walkway environment

operators of teleoperated mobile robots may be in short
supply in the case of a wide area disaster. In the case of NBC
terrorist attacks, a robot may come across evacuees when it
explores the target environment. In such a case, the robot
should have a function that allows it to autonomously avoid
moving obstacles(evacuees) and prevent collision. It is called
the “collision avoidance problem in dynamic environments”.

B. Research Purpose

One of the basic methods of solving the above collision
avoidance problem is to repeat path planning in a static
environment based on sensing data in short cycles. This is a
very simple and effective method. However, it is obvious that
this strategy generates redundant and unnecessary paths for a
mobile robot, and in the worst case, it collides with moving
obstacles (we reenacted in our mobile robot simulator).
Therefore, it is important to foresee the motion of obstacles
in the near future to plan the robot’s path. Therefore, in this
research, we aim to propose a collision avoidance method
that estimates the motion of moving obstacles.

To estimate the motion of moving obstacles, it is very
important to determine the type of moving obstacle. Many
researches on the collision avoidance problem in dynamic
environments assume that the orientation and velocity of
obstacles remain constant. However, in the case of evacuees
in a disaster environment, this assumption is not sufficient
because they also plan their paths to prevent colliding with
each other. Therefore, to proceed with our path planning
research, we selected specific target scenario of an NBC
terrorist attack in an underground mall. The target environ-
ment is a flat underground walkway (Fig. 1). In such an
environment, we assume that a rescue robot moves from one
end of the walkway to the other, and evacuees will move



along the walkway in the opposite direction. Therefore, it is
necessary for the robot to avoid evacuees.

In order to realize the above objective, we propose a
collision avoidance method that estimates the motions and
personal spaces of the evacuees. This method consists of
three steps: “estimation,” “conversion,” and “planning”. In
the estimation step, it estimates the future positions of
evacuees by considering their planned motions and personal
spaces. Then, in the conversion step, a time axis is added to
construct a 3D time-space coordinate system. Therefore, the
2D obstacle avoidance problem is converted to a 3D path
planning problem. Finally, in the planning step, a distance-
time transform is applied to plan a safe 3D path from the
robot’s current position to the desired goal.

To evaluate the validity of the above method, in this
research, we implemented it on our rescue robot simulator. In
this paper, we would like to introduce our collision avoidance
method, and show some simulation results using the rescue
robot simulator.

C. Related Works

A large number of studies have been conducted on col-
lision avoidance for mobile robots. Therefore, we introduce
some works that are closely related to our study.

Tsubouchi, et al. [2] defined a “3D XYT space” to
represent 2D obstacle motions with a time axis for motion
planning to avoid collisions in dynamic environment. They
assumed all obstacles’ motions to be uniformed linear mo-
tions. Thus, polygonal obstacles were represented by tilted
polygonal prisms. They verified the validity of their method
by a simple simulation.

Gupta and Jarvis [3] also used a 3D XYT space, and
their planning method used a distance transform [4]. To
estimate the motions of moving obstacles, they used a Gaus-
sian distribution to handle the uncertainty of the obstacles’
motions. They verified a validity of their method by a simple
simulation.

Basically, in this research, we use a 3D XYT space to
represent the obstacles’ motions, the same as the above two
ideas. A feature of our method is to estimate the obstacles’
motions by the motion planning of each obstacle considering
their personal space, instead of linear or Gaussian assump-
tion.

The concept of the personal space is widely used in studies
in the field of psychology, civil engineering and construction,
and robotics (e.g. [5],[6]). It is a useful model for estimating
the motion of people, and some researches have verified its
validity [7]. Each pedestrian has a single personal space, as
the extended ego. In this model, in a case where a personal
space is invaded, the individual feels uncomfortable and
changes his motion to maintain his personal space, as shown
in Fig. 2.

II. OVERVIEW OF COLLISION AVOIDANCE METHOD

Firstly, we introduce an overview of our novel collision
avoidance method to avoid evacuees in a 2D walkway

Fig. 2. Collision of personal spaces

environment. The following assumptions are made in this
research.

1) The target environment is a flat underground walkway.
2) A robot moves from one end of the walkway to the

other, and evacuees move in the opposite direction.
3) The robot can obtain accurate motion vectors for

obstacles using its onboard sensors.
4) The robot can follow the planned path accurately.

Based on the above assumptions, in this research, we
propose a collision avoidance method that consists of three
steps: estimation, conversion, and planning. By periodically
repeating the above three steps and executing the planned
motion, the robot performs collision avoidance motion.

A. Estimation

The first step “estimation” calculates the future position
of each obstacle from its past motion. The features of this
method are that (1) it considers not only the movement
vectors of the obstacles but their planned motion to avoid
colliding with other obstacles, and (2) it considers the
concept of personal space of each obstacle. Details of this
step are explained in section III.

B. Conversion

The second step conversion is to construct the a 3D time-
space coordinate system to express the obstacles’ motion
from the 2D planar space by adding a time axis T. Therefore,
the 2D obstacle avoidance problem is converted into a 3D
path planning problem, as shown in section IV.

C. 3D Planner

In the third step, planning, a 3D path is planned in the
3D time-space coordinate system. To plan the path, we
apply the distance-time transform method. The planned path
is equivalent to the planned robot’s motion, including its
position and time. The details of this step are explained in
section V.

III. E STIMATION

In the first step, estimation, our method estimates the
future positions of moving obstacles while considering their
personal spaces.

A personal space is generally defined as an oval figure,
with the space in front of a person larger than the rear



(a) 2D environment (b) Grid layer

Fig. 3. Definition of grid layer

Fig. 4. Definition of grid stack

space [6]. The personal space concept is based on many
complex rules, and its shape and size are affected by several
factors such as gender, age, and social position. However, to
simplify our method, we set the personal space as a constant
rectangular in shape, and the front length, rear length and
width are 1.5 (m), 0.4 (m), and 0.4 (m), respectively.

In our assumption, all the obstacles move in the same
direction at different speeds. Therefore, a slow obstacle in
the front should be passed by a fast obstacle in the rear. In
this case, in our method, the fast obstacle in the rear changes
its path to avoid colliding with the slow obstacle in the front.
This is because the slow obstacle in the front cannot see the
fast obstacle in the rear.

The specific rules used in the motion estimation for
obstacles are as follows:

1) In case that a personal space of an obstacle is not
violated, the motion of the obstacle is uniform linear
motion.

2) In case that the personal space of obstacle is violated,
the obstacle moves to the direction of the side of the
obstacle to decrease the violation of its personal space
until the personal space is not violated.

By imaginarily moving obstacles based on the above rules,
a robot estimates future positions of obstacles.

IV. CONVERSION

In the second step, conversion, our method constructs a 3D
time-space coordinate system from the estimated motions of
the obstacles shown in section III.

At the beginning of this step, we define agrid layer, as
shown in Fig. 3. In this layer, a 2D environment that is
defined by theX andY axis, is represented by grids. Each
grid has a property, namedstart grid Gstart, goal grid Ggoal,
obstacle occupied grid Goccupiedor free grid Gf ree that is not
occupied. In addition, there are two types ofGf ree, that are
free-reachable grid Gf ree−reach that a robot can reach at the
grid layer, andfree-unreachable grid Gf ree−unreach that the
robot cannot reach.

Each grid layer is an expression of the 2D environment
at certain times, because each grid layer has a time width
Twid (sec). These layers are stacked along the vertical axis
based on the passage of time, as shown in Fig. 4, and called
a grid stack. The bottom layer (layer[0]) represents the 2D
environment from the present time (t=0 (sec)) toTwid (sec)
later of it. Likewise,layer[n] represents the 2D environment
from tmin(n) to tmax(n) wheretmin(n)=Twid×n andtmax(n) =
Twid × (n+ 1). The total stacking number of grid layers is
represented asnlayer.

The occupied grids are defined by considering the personal
spaces of all the obstacles in each layer, or each time period.
Based on the above, the 3D time-space coordinate system is
constructed by a voxel representation. Therefore, a gridG has
three parameters,xg, yg andtg. Thexg andyg are parameters
that specify the position of the grid in X-Y surface, and the
tg is a parameter to specifies the number of the grid layer that
include itself. From now on, it should be kept in mind that a
grid that has a propertyα is represented asGα(xg,yg, tg). In
addition, a set ofGα(xg,yg, tg) in the grid layer is represented
asSetα(tg),

V. 3D PATH PLANNING

In the third step, planning, a 3D path is planned in the 3D
time-space coordinate system shown in section IV. Basically,
to plan a path, we apply the distance transform algorithm
proposed by Prof. Jarvis [4]. To apply it to our method, we
extended the algorithm, as shown in the following.

A. Basic Distance Transform

First, we would like to explain a basic distance transform
algorithm. A brief illustration of the idea is shown in Fig.
5. It is a grid based method where occupied grids and free
grids are assumed to be predefined in advance.

In the first half of the algorithm, a distance field is
generated by a distance function (Fig. 6). The value of the
start grid is set to 0, and the values of the grids without
obstacle occupied grids are calculated by a distance function,
recursively, from the grids adjacent to the start grid. There-
fore, after recursive calculations, each grid stores a grid-
based distance from the start point to form the distance field.
Although the distance function typically uses an approximate
Euclidean distance, as shown in Fig. 6 (a), sometimes, for



Fig. 5. Examples of 2D distance transform

(a) Apploximate Euclidean dist. (b) City block dist.

Fig. 6. examples of distance functions

simplicity, an city block distance is used, as shown in Fig.
6 (b). Fig. 5,Fig. 7 and Fig. 8 show the latter example.

In the second half of the algorithm, a path is determined
by descending the distance field from the goal grid. It is
executed by successively moving to the grid that has the
minimum distance value among the adjacent grids, from the
goal grid to the start. In Fig. 5, , the pink grids represent the
planned path from the start to the goal.

B. Extension of Path Search Algorithm

There is a problem with the original distance transform
algorithm. In the second half of the algorithm, there are
only 8 next grid candidates (Fig. 7-(a)). This means that
the minimum angular resolution of the robot is 45 degrees.
Furthermore the algorithm tends to choose diagonal grids
from the goal grid, because its decreasing difference is larger
than the horizontal and vertical differences. Therefore, it does
not derive the geometrical shortest path.

To solve this problem, we improved the second half of
the search algorithm to enhance the angle resolution of the
path search. Fig. 7 introduces our basic idea. The idea is that
the next grid candidates are not adjacent grids shown in Fig.
7-(a), but grids that centers of the grids are located on the
search disc, shown in Fig. 7-(b).

The angle resolution of the path search is greatly affected
by the internal radiusRint and external radiusRext of the disc.
A larger radius contributes a finer angle resolution to the
path. However, it also increases the possibility of generating
redundant path, because the length of each segment unit in
the path becomes larger. In a case where the environment
is not very complicated, we assign a value of 3.5 (grid) to
Rint and a value of 4.5(grid) toRext in this research, based
on our experience. We call this algorithm the2D disc search
algorithm.

C. Distanc Time Transform and Extended 3D Path Search

1) Distance Time Transform:In the first half of the
algorithm, in order to perform the distance transform algo-
rithm in the 3D time-space coordinate system, we propose
a distance time transform (DTT). The DTT is a procedure
that discretely repeats distance transform from a present time

(a) Conventional method (b) Proposed method

Fig. 7. Difference between path search methods

Fig. 8. The example of distance time transform

to the future. In the 3D coordinate system, a grid layer
represents the positions of obstacles and robot at the time
period. Therefore, a set of free reachable grid is limited by
the speed and current position of the robot.

The DTT repeats a subroutine that consists of three
processes: “selecting,” “applying” and “copying.” Concretely,
we execute as below.

At first, we focus onlayer[0] that represent the positions of
obstacles and the robot fromTmin(0) to Tmax(0). Initially, the
robot locates atGstart. The robot can reach to free grids that
encircleGstart, that areSetf ree−reach(0). In a case where there
are no obstacles in the grid layer, the shape ofSetf ree−reach(0)
is nearly a circle, and the size of the circle is determined by
the speed of the robot.

We perform a distance transform inSetf ree−reach(0), and
each grid of Setf ree−reach(0) stores a value of distance,
called distance value. Then, a maximum distance value in
Setf ree−reach(0), calledValmax(0), is selected.

Next, a distance value of the gridG(x′g,y
′
g,0) in

Setf ree−reach(0) is given to the gridG(x′g,y
′
g,1) if G(x′g,y

′
g,1)

is not an obstacle occupied grid. After the all grids in
Setf ree−reach(0) are copied by the above process, the distance
values of the all grids inlayer[1] are changed toValmax(0)



Fig. 9. Conditions for experiment in our simulator

for the initialization of performing a distance transform in
layer[1]. A set of grids that storeValmax(0) called already
distance transformed grids Setf inished(1).

Now, we focus onlayer[1], and selectSetf ree−reach(1) that
encirclesSetf inished(1). We also perform the distance trans-
form, and copy the distance values inlayer[1] in the same
way as in layer[0]. The DTT repeats the above subroutine
until the number of focusing grid layer reaches the value of
(nlayer-1).

2) Extended 3D Path Search:In the second half of the
algorithm, to derive a 3D path in distance time transformed
grid stack, we extend the2D disc search algorithmto the 3D
space, named a3D disc search algorithm. First, we select
layer[m] that includesGgoal in Setf ree−reach(m). The path
is determined by descending the discrete 3D distance field
from Ggoal in layer[m]. It is executed by moving to the grid
successively that has the minimum distance value in the disc
of the 2D disc search algorithmin the grid layerlayer[k]
(wherek= m−1). In a case where there are no grids to be
moved inlayer[k], it is executed in same grid layerlayer[m]
in the same way as in2D disc search algorithm.

VI. SIMULATION STUDY

A. Mobile Robot Simulator

To confirm the applicability of the proposed method, we
use the mobile robot simulator that we developed. A feature
of this simulator is that a navigation program that works in
the simulator is source-level compatible with our real robot,
Kenaf. Therefore, we can confirm our navigation programs
beforehand, but it does not guarantee the same motion in
the real world because it does not consider the dynamics of
mobile robots. Another feature of the simulator is that we
can set not only static obstacles, but also moving obstacles.
The obstacles’ information can be obtained by the simulated
2D-LIDAR (Laser Imaging Detection and Ranging) system
mounted on the simulated mobile robot. However, in this
simulation, the motion vectors of the obstacles are obtained
from the simulator directly. Fig. 9 shows an example image
from the simulator.

B. Implementation Parameters

We implemented our collision avoidance method as a
navigation program of the robot Kenaf. Each grid layer,

as shown in section IV, is 10 (m) in length (8 (m) in the
front and 2 (m) in the rear) and 8 (m) in width (4 (m)
on the left and 4 (m) on the right). The area of each grid
is 10 (cm) square. To form the 3D time-space coordinate
system, the time interval between adjacent layers,Tinterval,
is set to 3 (sec), and the number of layers,nlayer, is set
to 10. The robot’s maximum velocityVmax is set to 400
(mm/sec). Therefore, the robot can reach 12000 (mm) (=
Tinterval×nlayer×Vmax). The planning loop of the proposed
method is conducted in every 1 (sec).

C. Condition of Moving Obstacles

Fig. 9 shows a virtual walkway environment in the mobile
robot simulator. The width of the walkway is 8 (m). We
defined four moving obstacles in the simulator, represented
by hexagonal cylinders, that move toward the robot along
the walkway. The sizes of all the obstacles are the same, 30
(cm) in diameter. However, different values are used for the
velocities, with obstacles A, B, C, and D moving at 20, 30,
40, and 50 (cm/sec), respectively. The motion rules for each
obstacle are as follows: (1) it moves forward when there is no
interference in front of it, and (2) it evades a certain distance
when there are slower obstacles in front of it. The goal of
the robot is located at the behind of the moving obstacles.

D. Simulation Result

We conducted several simulations using different initial
positions for the obstacles. In some simulations, the robot
avoided all the obstacles by estimating their movements.
Figs.10 (a)-(c) show a good example where the proposed
method worked well. In this figure, the red dots showed
the planned path at the last time of the each figures with
time width, the overlapping robots and obstacles show their
respective trajectories that indicate their motions, the green
boxes show the areas of each grid stack, and the white
arrows on the obstacles’ trajectories show their motions. The
robot estimated the motion of obstacle D in advance; thus,
it generated a detour path to avoid it.

To evaluate our method, we implemented a conventional
collision avoidance method. Almost of all the path planning
method is the same, but it does not estimate the future posi-
tions of moving obstacles while considering their personal
spaces. Instead, it assumes that the obstacles move with
uniform linear motion. In this method, obstacles may be
imaginary overlapped (of course, this does not happen in
the real world), but the robot does not consider it. Figs.10
(d)-(f) show the simulation results. The robot tried to move
to the side of obstacle B, but later it collided with obstacle
D while trying to evade obstacle B.

In this simulation, we did not consider occlusion of sen-
sors. Furthermore, it is impossible to accurately estimate the
obstacles’ motions. Therefore, it is impossible to guarantee
the effectiveness of the proposed method in the real world.
However, the simulation results at least proved that the
estimation of obstacle motions based on personal space
worked reasonably well in comparison with the principle of
uniform linear motion.



(a) t = 0 (b) t = 0 to t = 7 (c) t = 10 to t = 15

(d) t = 0 (e) t = 0 to t = 7 (f) t = 10 to t = 15

Fig. 10. Simulation results: ((a)-(c) results of our proposed method and (d)-(f) failure result of conventional method)

VII. CONCLUSION

We proposed a method for path planning without collision
considering the motion of evacuees. The proposed method
was implemented as the navigation program for a mobile
robot, and some collision avoidance simulation experiments
were conducted to verify its usefulness.

The future works are as below.
1) Separating the obstacles’ motion estimation algorithm

from the obstacles’ motion decision algorithm
2) Consideration of the personal space of a robot
3) Consideration of complex motion rules of obstacles
4) Realization of real machine experiments (we have been

developing a high speed 3D sensor that is able to detect
3D obstacles.)
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