半潜水艇型USVによる蔵王御釜の深度調査

○渡辺 敦志 (東北大学) 久利 美和 (東北大学) 永谷 圭司 (東北大学)

1. はじめに

活火山を多く有する日本では、火山災害は重要な問 題である。避難計画やハザードマップの作成といった、 火山防災・減災のための取り組みは、火山学者による フィールド調査の結果に基づいて行われている。火口 湖やカルデラ湖は、火山噴火時に水蒸気爆発を起こし たり、火口壁の崩落により越流して鉄砲水などを引き 起こす場合があるため、調査の対象になっている。ま た、火口湖底の隆起状況の確認は、噴火予知のための 情報の一つになる。

例えば、蔵王連峰の馬の背カルデラ内に位置する火 口湖"御釜"は、図1に示すように、人力でカヌーを漕 いで回ることで調査されている。2015年のフィールド 調査[1]においては、平均深度は約25mであった。調 査の際には、標高1500m付近の立ち入り制限区域内 にある御釜までカヌーを人力で担いで運ぶ必要があり、 低温で強い風のある湖上で長時間作業をするため、転 覆や低体温症のリスクがある。

本研究は、可搬性の高い小型のUSV(無人水上機: Unmanned Surface Vehicle)を用いて調査者のリスクを抑 えた、火口湖の深度地図作成を実現することを目的と している。本研究では、強風への耐性を持たせるため 半潜水艇方式を採用し、水中に二個のスラスタを固定 した構造の小型 USV を開発し、GPS で取得した位置 に基づいた自律航行と魚群探知用のソナーによる深度 測定を実現した。本項では、蔵王連峰の御釜において フィールド試験を行った結果を示す。フィールド試験 では、御釜の北半分の深度を自律調査することができ、 5 から 20 m/s の強風の下で転覆すること無く航行可能 であることが確かめられた。

2. 関連研究

文献 [2] では、複数の USV を用いたカルデラ湖の調 査システムとフィールド試験の結果が報告されている。 この報告では、フィリピンのタール湖の表面温度分布 を、空中のプロペラとフラップ舵を持つ5台の USV を 持ちいた自律システムによる調査が実現できている。 タール湖の調査と比較して、御釜の調査には、以下に 示す特有の難しさが存在する。

- 高山性の強風
- 腐食性の湖水
- 限定された現地への移動手段 (タール湖は馬での 移動が可能、御釜では徒歩のみが可能)

半潜水艇は、風の抵抗と、水面での造波抵抗、波の 影響を抑えることが可能 [3] であり、USV においても 採用されることがある [4].

フラップによる操舵を用いない、固定のスラスタを 二個用いた USV の制御については、線形化モデルに基 づく MIMO 制御の手法が [5] 提案されている。一方本

図 1. カヌーを用いた従来の御釜調査

稿では、流体力学に基づいて USV の速度・角速度を独 立に制御する手法を用いる。

3. 火口湖調査 USV システムのコンセプト

表1に、御釜の地理情報を示す。また御釜の湖水は 硫酸性であり、腐食性が強い。このような環境におい て USV による調査を実現するために必要な要求を以下 に示す。

- 1. 山中を運搬するための可搬性
- 2. 強風への耐性
- 3. 腐食性湖水への耐性

これらの要求を満たすため、本研究では、小型で可 搬性が高い、半潜水艇型で自律の、使い捨て可能な安 価なスラスタを用いる USV を開発する。

- 小型で可搬性が高い 本研究で対象とする環境において は、全ての必要な機材は人が徒歩で運搬する必要 がある。そのため、USV は登山用のリュックサッ クに収納して運搬でき、軽量である必要がある。
- 半潜水艇型で自律 強風下で動作するため、風の抵抗や 水面の波の影響を受けにくい、半潜水艇型の構造 を用いる。半潜水艇は水面に出た部分が少なく、か つ湖水の透明度が低く目視が困難なため、遠隔操 作は行わずに自律航行を行う必要がある。
- 使い捨て可能な安価なスラスタ 御釜の湖水は硫酸性で あり、腐食性が強いため、スラスタなどの機械部

表 1. 蔵王連峰 御釜		
位置	38.1365° N, 140.449472° E	
標高	1,550 m	
幅	$320 \sim 340 \text{ m}$	
最大深度	27.6 m (1968 年)	

図 2. 開発した半潜水艇型 USV のハードウェア構成

品は容易に腐食して故障する。そこで、本研究で は、低コストのモータを用い、プロペラをダイレ クトドライブで駆動する方式として、一回の調査 毎にモータを交換することで、システム全体とし ての耐腐食性を実現する。

4. 火口湖調査 USV の開発

4.1 機構

図 2 に、開発した USV のハードウェア構成を示す。 外寸 290 x 330 x 210 mm、重量 1.3 kg であり、一般的 な 30 L のリュックサックに収納可能である。機体は食 品用の密閉容器を使用し、防水構造とした。内部の電 子回路の放熱のため、底面はアルミ板で構成している。

開発した USV は半潜水艇型であるが、水が無線信号 を大きく減衰するため、通信と GPS 受信機のアンテナ は、水上に出す必要がある。USV の喫水は能動的には 制御せず、0.6 m/s の速度で機体の上面のみが水面に出 るように調整した。

開発した USV は、2 台の向きを固定したスラスタを 持ち、それぞれのスラスタはダイレクトドライブのモー タにねじり方向を左右対称にしたプロペラを取り付け て構成した。使用したモータは、マルチローターへリ などに用いられる数百円の安価なモータであり、腐食 性の水で破損しても安価に交換できる。

4.2 計測·制御

USV の計測・制御には、Intel 製のスティック PC BOXSTCK1A32WFCR を用いた。ソフトウェアシステ ムは Ubuntu 16.04 および ROS Kinetic を用いた。また、 計測・制御に用いる電力はリチウムフェライト (LiFePO4) 二次電池 (2.3 Ah, 13.2 V) を用いた。

4.2.1 フィードフォワード速度制御

USV の角速度は、IMU(Inertial Measurement Unit) を 用いて高速に取得できる。一方、並進速度は直接に取 得することが難しい。そこで本システムでは、角速度 は IMU の情報を用いたフィードバックにより制御し、 並進速度は流体力学に基づくフィードフォワード計算 によって制御する。

スラスタ*i*による力は、プロペラ回転数の二乗に比 例する。また、水から受ける抵抗は、USVの速度の二 乗に比例する。

図 3.2台の固定スラスタを持つ USV に働く力

図4. USV 並進速度を一定にするスラスタ回転数の条件

$$T_i \propto (n_i)^2, F \propto v^2$$
 (1)

USV の並進速度が一定のとき、スラスタの合力と水から受ける抵抗が釣り合う。

$$F = T_1 + T_2$$

$$v^2 = \begin{cases} k ((n_1)^2 + (n_2)^2) & (n_1 > 0 \land n_2 > 0) \\ k ((n_1)^2 - (n_2)^2) & (n_1 > 0 \land n_2 < 0) \\ k (-(n_1)^2 + (n_2)^2) & (n_1 < 0 \land n_2 > 0) \end{cases}$$
(2)

kは、流体力学上のパラメータをまとめた定数であり、スラスタを一定の回転数nで駆動したときのUSV 速度vを測定することで、次式から求める。

$$v^2 \big|_{n_1 = n_2 = n} = 2kn^2 \tag{3}$$

すなわち、角運動によららず、USV の並進速度を一 定にするためには、式 (2) を満たすように、図4に示 す2個のスラスタの回転数の関係を保てばよい。また、 USVの角速度は、式(2)を媒介変数形式に変換し、IMU で測定した角速度の誤差を、媒介変数(図4の矢印方 向)にフィードバックする比例制御系により制御する。

各スラスタのプロペラ回転数は、T-frog プロジェクトのモータドライバ TF-2MD3-R6を用いて、VVVF(可変電圧可変周波数制御)方式を用いて駆動・制御した。

図 5. Google MyMaps 上で設定した USV の目標パス (従来の調査用のロープを避けて設定)

4.2.2 位置推定

USV の位置・姿勢は、u-blox 製の GPS 受信機 EVK-6T から得られる位置と、RT 製の IMU RT-BT-9AXIS-00 の データを統合して得る。IMU の姿勢は、ROS パッケー ジ imu_filter_madgwick を用いて、ジャイロセンサ・加 速度センサ・地磁気センサのデータを融合して得る。

4.2.3 経路追従制御

自律航行のパスは、Google MyMaps や Google Earth 等で作成した、kml ファイル形式で与える。

与えられたパスに対して USV は、距離誤差、角度誤 差、角速度を0に近づけるよう角加速度に線形フィー ドバックする、車輪型移動ロボット向けの制御手法 [6] を用いた。ただし、USV は車輪型移動ロボットと比較 して角運動制御の応答性が低いため、振動を抑えるた め、距離誤差、角度誤差は線形外挿により予測した値 を用いて制御する。

4.2.4 ソナー信号のノイズフロア改善

深度測定用ソナーの振動子(送信ビーム角45度)および送受信回路には、安価なノーブランドの魚群探知機を用いた。送受信回路の対数アンプで増幅された、湖底からの反射波の信号を、音響信号として PC でサン プリングして保存する。

本システムでは、スラスタとソナー振動子の距離が 近いため、電気的なノイズがソナー信号に重畳し、ソ ナー信号の S/N 比を悪化させる。そこで、本システム では 10 m 移動する毎に、5 秒間モータ駆動系の PWM スイッチングを停止することで、ソナー信号のノイズ フロアを改善する。

5. 蔵王連峰 御釜におけるフィールド試験

開発した USV システムを用い、御釜の深度地図生成 を行った。

5.1 試験環境

表2に、フィールド試験実施時の御釜の状況を示す。 試験実施時には、御釜湖面には表層循環流があった。

図 6. 御釜北ルートにおける自律航行の結果

御釜は馬の背カルデラの推定火口域内にあり、立ち 入りが制限されている。試験に当たっては、蔵王連峰 の火山活動状況評価のための調査隊に同行し、入山許 可を得ている。開発した USV および関連する物品は、 1 名で 30 L リュックサックに収納して運搬した。

USV によるフィールド試験は、従来の人手による調査と並列に行った。

5.2 目標パス

図5に、試験に用いた目標パスを示す。北ルート、南 ルートのパスは Google MyMaps 上で作成した。

従来の調査では、カヌーのガイドにするため、御釜 の中央東西にロープを張っている。そのため、USVの パスは、ロープを避けるように設定した。

5.3 フィールド試験結果(北ルート)

図6に、北ルートにおける自律航行の結果を示す。自 律航行には、目標並進速度0.6mの設定で、約35分を 要した。USVの移動軌跡は、特に終了地点付近で目標 パスの方向に回頭しているものの、南西に流されてい ることが確認できる。本システムでは、ロボットの並 進速度は流れに対する相対値で制御するため、流速が ロボットの目標並進速度に近い場合、目標パスに到達 することはできない。すなわち、この環境で目標パス に到達するためには、USVの速度を大きくする必要が ある。

図7に、生成した深度地図を示す。なお、各地点の 深度は、同地点で計測できた1から5回の深度計測の 平均値を示す。

また、モータ駆動を停止している際のソナー信号の ノイズフロアは、駆動中と比較して 20 dB 程度、改善 されていることが確認できた。

5.4 フィールド試験結果(南ルート)

南ルート開始地点では水流が強く、これに逆らって航行する必要があるため、USVの目標並進速度を0.8 m/s に変更して試験を行った。その結果、USV が潜水し、

表 2. フィールド試験時の御釜の環境

実施日時	2016年6月2日
気温	6.5°C
水温	7.0°C
風速	$5\sim 10 \text{ m/s}$
突風	約 20 m/s
火山警戒レベル	1 (噴火予報)

図 7. USV で生成した深度地図

水圧で浸水して動作を停止した。これは、目標速度を 高めたことと、北ルートの実験の最後に、スラスタの 取り付け腕が石に当たり、下向きの推力を発するよう に変形したことが影響しているとみられる。

6. 考察

6.1 得られた知見

御釜におけるフィールド試験の結果、以下の知見が 得られた。

- 5から20m/sの風の中でも転覆せず、半潜水艇型にすることで風の影響を削減可能
- モータドライバの PWM を停止することで、ソナー 信号のノイズフロアを改善可能
- モータ内部が試験後に腐食しており、安価なモー タを用いて交換することが有効
- 岸の近くにUSVを投入すると打ち上げられてしまうため、沖に投入するための棒などが必要
- 喫水を制御しないと、高速では USV が浮上もしく は潜水状態に移行

6.2 今後の展開

開発した USV の実用化には、下記の項目が課題とし て残されている。

- パスの追従性能向上と、より広い面積の調査のための、USV 速度向上
 - 喫水の制御が必要
- フィードフォワード速度制御の定量的評価
- 温度センサの追加
- 電力効率の向上
 - モータの VVVF 制御をセンサレスベクトル 制御化

2016年9月には、再び、蔵王連峰の火山活動状況調 査隊に同行してフィールド試験を行う予定である。そ こでは、御釜全域の詳細な深度地図を生成することを 目指す。

7. おわりに

本研究では、可搬性の高い小型のUSVを用いて、火 口湖の深度地図作成を実現することを目的としたUSV システムを開発した。強風への耐性を持つ半潜水艇方式 で、水中に二個のスラスタを固定した構造の小型 USV を開発し、GPS で取得した位置に基づいた自律航行と 魚群探知用のソナーによる深度測定を実現した。また、 蔵王連峰の御釜においてフィールド試験を行い、御釜 の北半分の深度の自律調査を実現した。試験において は、5 から 20 m/s の強風の下で転覆すること無く航行 可能であることが確かめられた。

2016年9月に、再度フィールド試験を行う予定であ り、本稿で述べた課題を解決し、御釜全域の詳細な深 度地図を生成することを目指す。

謝辞

蔵王のフィールド試験は、東北大学環境科学研究科 土屋研究室の協力の下で実施された。また、USVの予 備試験は、東北大学工学研究科 永谷研究室の渡辺健太 郎、西村和真、多々納壮各氏の協力を得て行った。

参考文献

- A. Goto, et al.: "Activization of zao volcano within the past 100 years and the present activity", Japan Geoscience Union Meeting, pp. SVC47–P04, 2016.
- [2] A. Valada, et al.: "Development of a Low Cost Multi-Robot Autonomous Marine Surface Platform", pp. 643–658, Springer, 2014.
- [3] K.-h. Mori, et al.: "9. a study on semi-submersible high speed ship with wings : Its resistance characteristics and possibility", Naval architecture and ocean engineering, vol. 27, pp. 93–102, 1989.
- [4] V. Bertram: "Unmanned surface vehicles a survey", Skibsteknisk Selskab, pp. 1–14, 2008.
- [5] J.-H. Park, et al.: "A model estimation and multi-variable control of an unmanned surface vehicle with two fixed thrusters", IEEE OCEANS, pp. 1–5, 2010.
- [6] S. Iida and S. Yuta: "Vehicle command system and trajectory control for autonomous mobile robots", IEEE/RSJ IROS, pp. 212–217 vol.1, 1991.