
neonavigation meta-package: 2-D/3-DOF Seamless Global-Local Planner for
ROS –Development and Field Test on the Representative Offshore Oil Plant–

Atsushi Watanabe1, Daisuke Endo1, Genki Yamauchi1 and Keiji Nagatani1

Abstract— This paper introduces an algorithm and imple-
mentation of a new navigation package for ROS. The contribu-
tion of this work is to provide a path and motion planner
package that is suitable for the complex and narrow envi-
ronments. The package realizes a 2-D/3-DOF seamless global-
local planner. In this package, collision avoidance frequency
can be faster than the conventional one, and planned path is
always taking the global goal into account. The new navigation
package is released as an open-source software on GitHub. In
this paper, the field test results in the representative offshore
oil plant, which has narrow corridors with projecting pieces of
equipment, are shown.

I. INTRODUCTION

The standard ROS (Robot Operating System) navigation
meta-package was developed by Willow Garage and main-
tained by some ROS core members. It is reported that
the navigation meta-package is suitable for long-distance
navigation in an indoor office environment [1]. Also, it is
known to be available in some simple outdoor environments.

Path-planning algorithms used in the conventional naviga-
tion meta-package are mainly Dijkstra search for the global
planner and Dynamic Window Approach [2] and Trajectory
Rollout [3] for the local planner. A layered 2D costmap
framework is provided to combine static and dynamic maps.

However, in the complex and narrow environments, for
example, in industrial plants and messy indoor offices, sev-
eral problems exist in the navigation provided by the ROS
navigation meta-package.

• Separated global and local planners
– Obstacle avoidance considers the only local area.
– Global and local paths contradict and oscillate.

• Blind recovery behaviors
– Recovery behavior plugins cannot use costmap data

and planner functions.
– Officially provided recovery behaviors are ad-hoc and

cause physical crashes in complex environments.
The authors are developing a new 2-D/3-DOF seamless
global-local planner ROS package by radically improving
the above problems. The package is now an open-source
software, distributed on GitHub: https://github.com/
at-wat/neonavigation/.

On the other hand, the authors are developing a fully-
automated inspection robot system as competition for the
autonomous robot system for offshore gas and oil plants,
called ARGOS (Autonomous Robot for Gas and Oil Sites)

1All of the authors are with Field Robotics Laboratory, Tohoku University,
New Industry Creation Hatchery Center, Aramaki-Aoba 6-6-10, Aoba-ku,
Sendai, 980-8579, Japan, atsushi.w at ieee.org

Global Planner

Local Planner

MUX

Recovery
Sequence

Robot Driver

Path

Motion

Application
Goal

Application

MUX

Temporal
Escape

Collision Prevention

Path

Goal

Motion Controller
Motion

Global/Local Planner

Robot Driver

Motion

slow

fast

medium

very fast

very fast

Control
freq.

a) conventional navigation package b) neonavigation package

Fig. 1. System structures of the conventional navigation meta-package and
the new navigation meta-package, “neonavigation”.

Challenge [4]. In this competition, small plants structured by
temporary scaffold are used as a test field. The test field is
made by an integrated oil company, Total, and it has almost
the same equipment as the original one.

This paper introduces an algorithm and implementation
of the new navigation meta-package and an example of the
application for the ARGOS challenge. Also, field test results
on the representative oil plant on the ARGOS challenge are
shown.

II. ALGORITHMS AND STRATEGY

Figure 1 shows the difference of the standard system struc-
tures between the conventional navigation meta-package, and
the new navigation meta-package named “neonavigation”.

A. Conventional navigation meta-package

In the conventional navigation meta-package, global plan-
ner and local planner are separated and have a different
control frequency. Typically, global planner frequency is
above 1 Hz, and local planner is around 10 Hz.

In this structure, provided by the move base package, local
planner simultaneously does motion planning considering
kinematics of the robot hardware and obstacle avoidance.
Since the local planner has the role of obstacle avoidance,

https://github.com/at-wat/neonavigation/
https://github.com/at-wat/neonavigation/

its control frequency must be fast enough according to the
speed of the robot.

Also, since the local planner does not have the global
goal information, the planner sometimes selects the local
minimum in the local costmap or oscillated motion.

Moreover, since the recovery behaviors are completely
independent of the planners and overwrite the planner result,
most of the recovery behaviors provided in the navigation
meta-package are the motion sequence without any sensor
information; recovery behaviors cause collisions in complex
and narrow environments.

B. neonavigation meta-package

In the neonavigation meta-package, the motion control that
controls the vehicle to follow the generated path based on
[5] and collision prevention are separated from the planner;
then the motion control and collision prevention can have the
faster control frequency. For example, global/local planner
frequency is around 5 Hz, and the motion control and
collision prevention can be 50 Hz.

Also, the global and local path are seamlessly and simul-
taneously planned based on the A* algorithm. The global
plan is included as a heuristic function of the A* as a
distance from the goal. The distance from the goal can
be preliminarily calculated when the goal is given and the
environment is changed. Therefore, the A* search result from
the start with censoring at the necessary distance for the
local plan can always be a globally optimum path in the
measurable world.

In the neonavigation meta-package, the recovery behavior
temporarily overwrites the goal of the application; collision
avoidance and prevention are always available.

III. NEONAVIGATION META-PACKAGE

The neonavigation meta-package currently has five pack-
ages: costmap, planner, safety limiter, trajectory tracker, and
neonavigation launch packages. The neonavigation launch
package contains an example launch file for testing and a
skeleton to be used in the application.

Figure 2 shows the system structure of the navigation
system and data flow provided by the neonavigation meta-
package. Mainly the following four nodes in these packages
are used in the autonomous navigation. Currently, these
nodes do not have nodelet plugins; it remains as a future
work.

A. costmap 3d

The costmap 3d node generates and updates 2-D/3-DOF
costmap from 2-D maps. This node subscribes global static
2-D map and local dynamic 2-D map. The generated costmap
is an occupancy gridmap in x, y, and yaw configuration
space.

Figure 3 shows an example of the generated 2-D/3-DOF
costmap where the z-axis represents yaw orientation of the
robot. Occupancy of the grid near the obstacle is calculated
by the footprint and orientation of the robot.

2-D/2-DOF map
type: OccupancyGrid
(conventional
 grid based 2-D map)

planner_3d

safety_limiter

costmap_3d

2-D/3-DOF map
type: CSpace3D

Partial (local) 2-D/2-DOF map
type: OccupancyGrid

Velocity command
type: Twist

Velocity command
type: Twist

convert by using the footprint

merge (overwrite or maximum) Goal pose
type: PoseStamped

2-DOF Dijkstra’s search
from the goal

3-DOF A* search
from the current pose

with censoring

trajectory_tracker

Planned path
type: Path

Cost matrix from the goal
as a heuristic function

2-D/3-DOF map update
type: CSpace3DUpdate

Linear feedback based
path following control [5] Point cloud data

type: PointCloud2

Collision prediction

Time optimal
velocity control to stop

Distance to collide

Minimum Velocity

Fig. 2. Data flow diagram of the navigation using neonavigation meta-
package.

B. planner 3d

The planner 3d node is based on the A* algorithm with the
heuristic function of the distance from the goal considering
obstacles. The distance from the goal is calculated and held
as a distance map and is partially updated triggered by the
update of the costmap. This works as a global planner.

The state transition is searched in the configured range
on the x-y surface and every orientation. Also, the kine-
matic constraint cuts branches of the search to decrease
computation cost, as shown in Figure 4. Only states that
are connectable from the current state by a circular arc are
alive in the search. The search from the current robot pose
to the goal can be censored at the configured distance. Still,
the search result is a sub-optimal local path since the global
distance from the goal is always considered.

Also, to reduce the oscillation and the computation cost,
distance from the planned path in the previous cycle is added
to the path search cost function. This works as a hysteresis
of the path selection.

For example, as shown in Figure 5, paths with switch-back

yaw
orientation

Fig. 3. Visualized 3-DOF costmap in (x, y, yaw) configuration space.

Current

Connectable
by circular arc

Not
connectable

Fig. 4. Grid search with kinematic constraints.

motion can be planned. Grid search algorithm is optimized
by considering the processorfs cache and re-ordering near
grids to have closer addresses. As a result, this planner can
work in around 5 Hz on the Core i7 processor at an average
of less than 50

In some cases, with a complex narrow place in that
difficult-to-find path, the planner gets slower compared to
the conventional navigation meta-package since it considers
the relatively larger number of possible motions. In this
case, a watchdog timer in the planner publishes zero velocity
commands until the path is planned. After finding the path
in such a case, the planner gets faster since the path near the
previous one is preferentially searched due to the hysteresis
factor of the cost function.

For recovery from a stuck position, the goal pose is
temporarily overwritten by the random pose around the
current pose if no available path is found. This makes the
movement of the point of view of the sensor and helps it
to escape from being stuck. During this, path planning and
collision prevention are always enabled.

C. safety limiter

The safety limiter node prevents collision to the obstacle
by decreasing the linear and angular velocity. This node
predicts the pose of the robot by linear extrapolation ac-
cording to the current velocity command, and determines the
distance to the collision, as shown in Figure 6. The velocity

Desired goal

Current robot pose

Heuristic function
(works as a global planner)

Generated path
with switch-back motion

Fig. 5. Grid search with kinematic constraints.

vref

 ω
ref

Collision

dcol

Fig. 6. Controlled variables of the collision prevention.

is decreased based on the following expressions and are time
optimal controls to stop dmergin before the collision.

vlim = sgn(dcol −dmergin)sgn(vre f)
√

2α |dcol −dmergin|

ω lim = ω
vlim

vre f

(1)

where α is a desired acceleration of the robot motion.
Input and output velocity command of the safety limiter

always have the same turning diameter; the resultant path of
the robot does not change from the given path even if the
safety limiter is used.

D. trajectory tracker

The trajectory tracker controls the vehicle’s linear and
angular velocity, to follow the given path based on [5]. This
implementation was reported in [6].

The control is the linear feedback of the distance, angle,
and angular velocity error against the given path to the
robot’s angular acceleration. These controlled variables are
defined, as shown in Figure 7.

IV. FIELD TEST ON THE REPRESENTATIVE OFFSHORE
OIL PLANT

The developed neonavigation meta-package was tested in
the ARGOS Challenge competition held by Total.

Desired path

derr()t

T
an

g
en

t
li

n
e

θ
err(t)

T
an

g
en

T
an

g
en

Average curvature

c()t

Angular velocity ω(t)

Velocity v(t)

Its error
 ω = ω − (t) err (t) c(t)v(t)

Fig. 7. Controlled variables of the path following control based on [5].

The site, named “UMAD,” is the representative offshore
oil plant in Lacq, France that imitates a typical Total
petroleum processing environment. The following tests were
done for the second of three times in the competitions held
on April 4 to 8, 2016.

A. Scenario of the test

Figure 8 shows the picture of the UMAD. At the time
of the competition, the ground, first, and second floor were
used in missions.

The robot system is required to navigate through several
floors and inspect pressure gauges, valve positions, water
level gauges, and temperature of the equipment. The op-
eration of the system must be fully automated and ask
human operator permission or selection of the behavior only
in abnormal situations. In some of the missions, network
disconnections, alert sirens, ultrasounds of gas leaks, and
high-temperature sources appear. After recognizing these
abnormal states, the robot has to go to the safe area, find the
position of the abnormal source, and report it to the operator.

Table I shows summaries of the given missions. The
missions were given as a text with a sketch of the positions,
and the authors made mission scripts that contain positions
to visit and measure.

B. Autonomous mobile robot system using neonavigation
meta-package

Figure 9 shows the robot system, “AIR-K 1.5”, used for
the test in the ARGOS challenge. The AIR-K 1.5 is based on
the 6-crawler mobile robot “kenaf” [7] that has two tracks
and four sub-tracks.

Ground floor
First floor

Second floor

Fig. 8. The representative offshore oil plant “UMAD” in the ARGOS
(Autonomous Robot for Gas and Oil Sites) Challenge competition held by
Total.

The AIR-K 1.5 has two 3-D LIDARs, Hokuyo YVT-X002
[8] and an IMU for the autonomous navigation, four cameras
for the measurement of the gauges, a thermal camera for
detecting heat sources, and an ultrasound microphone for
detecting gas leak sounds. The robot is connected to the
operation room through wireless LAN to report the status of
the robot system and receive mission updates.

Figure 10 shows a system software structure of the AIR-
K 1.5. The goal given to the planner is applied by mis-
sion manager. The system has two other motion planners:
“step traverse” for climbing and descending the steps and
“cv measure” for changing the posture and measuring the
gauges. The output of the motion planner is multiplexed
according to the mission managerfs decision. Pointcloud data
from 3-D LIDAR is provided by “hokuyo3d” node, and
the occupancy gridmap for the navigation is generated by
“travelable area” node. Also, the static map of the each floor
is selected by “select map” node.

The AIR-K 1.5 uses an implementation of the Monte
Carlo localization, “amcl” package, from the conventional
navigation meta-package. The localization is performed in
the 2-D map of each floor using a clipped from 3-D LIDAR

TABLE I
SUMMARY OF THE MISSIONS

mission start goal points to be inspected special

#1 Starting area Starting area Measure the pressure gauge CP1, and
the valve CP14 on the second floor

#3 Safe area Starting area Visit VP1, VP2, and VP3 An unknown obstacle exists in the UMAD
#4 Starting area Starting area Look around and find heat source
#5 Starting area Starting area Measure the valve CP5 and the pres-

sure gauge CP7, CP1, and CP3
#6 Starting area Starting area Measure the valve CP4 and the water

level gauge CP9
Several abnormal state and additional mission will be given
during the mission

∗ #2 was a free mission to be defined by each participent.

430 mm 57
2 m

m

3D LIDARs
Thermal Camera

Cameras Ultrasound microphone
PC, IMU

Battery,
Motor controllers

Fig. 9. The robot system, called AIR-K 1.5, for the test in the ARGOS
challange, based on the 6-crawler mobile robot “kenaf” [7]

OccupancyGrid
mission_manager

step_traverse cv_measure
planner_3d

MUX

safety_limiter

robot driver

remote operation interface

hokuyo3d

AIR-K 1.5

costmap_3d

travelable_area
PointCloud2

CSpace3D (commands and parameters)

Twist

Twist

Twist

(mode)

select_map
OccupancyGrid

(floor number)

LaserScan

amcl

nodes nodes from neonavigation pkg.Message TypeNote:

trajectory_tracker
Path

Fig. 10. Software system structure of the AIR-K 1.5 excepting measure-
ment system

data.

C. Tests and results

The #1, #3, #4, #5, and #6 missions were performed in
the test. Figure 11 shows a picture of the robot system on
UMAD. The floor surface has lugs and holes, and the robot
gets large disturbance.

Figure 12–14 show examples of the navigation results of
the missions. The navigation through narrow corridors in
these missions is successfully done and never crashes into
the obstacles, even in the case of localization failure.

Results of the 9 trials of the five missions are shown
below. Problems related to the neonavigation meta-package
are italicized in the lists.
mission #1 try-1 (aborted)

1) localization failure (retried from the start)
mission #1 try-2 (completed)
mission #3 (completed)

1) vibrative path during passing through very narrow
place (autonomously solved)

Fig. 11. Picture of the robot on UMAD

2) soft collision to the environment (continued)
3) localization failure (corrected position and contin-

ued)
mission #4 try-1 (completed)
mission #5 try-1 (aborted)

1) stack after climbing the step due to a bug in mis-
sion manager (retried from the start)

mission #5 try-2 (completed)
1) sub-track hardware problem (continued)

mission #4 try-2 (aborted)
1) sub-track hardware problem (retried from the start)

mission #4 try-3 (completed)
1) soft collision to the environment (continued)

mission #6 (aborted)
1) localization failure (corrected position and contin-

ued)
2) sub-track hardware problem (continued)
3) stair descending motion failed due to a bug (mission

stopped)

V. LESSONS LEARNED AND FUTURE WORKS

It is confirmed that the robot system with the neonavi-
gation meta-package is suitable for navigating a plant with
a narrow corridor. However, quantitative comparison to the
conventional navigation meta-package remains for future
work.

Fatal problems on the tests were mainly caused by lo-
calization and mechanical problems. Since this environment
has sparse wall structure by the temporary scaffold, 2-D
localization by using clipped 3-D pointcloud is not enough.
3-D localization, with the constraint of the ground vehicle,
might improve this problem.

On the other hand, it is clear that the minor problems
still exist on the neonavigation meta-package. In some cases,
the generated path was vibrative, especially while passing
through the very narrow place. This problem seems to be
caused by the difference in the viewpoints of sensing the
obstacle and planner cycle. However, the paths were finally
converged autonomously.

1. Start

2. End

Floor 1

Floor 2

1 m

Stair/step climbing and descending

Fig. 12. Navigation result of the mission #1 (try-2)

1. Start

2. End

Floor 1

1 m

Fig. 13. Navigation result of the mission #4 (try-3)

Also, soft collisions to the environment occurred. This
problem seems to be caused by the lack of sensing ability,
and hardiness to move as decided due to the rough floor
surface.

Improvement of the planner to decrease vibrative motion,
improvement of the path-following controller and collision
prevention remain for future works. Also, a quantitative eval-
uation of the package and tests on more of the environments

1. Start

2. End

Floor 1

1 m

Fig. 14. Navigation result of the mission #5 (try-2)

are required.
VI. CONCLUSION

This paper introduced an algorithm and implementation
of the new navigation meta-package for ROS. The package
realizes a 2-D/3-DOF seamless global-local planner. This
work provides a path and motion planner package for ROS
that is available in the complex and narrow environments.
The main advantage of this meta-package is that the collision
avoidance frequency can be faster than the conventional,
planned path, always taking the global goal into account.

The ability of the developed new navigation meta-package
was confirmed by the field tests in the representative offshore
oil plant with narrow corridors. The authors are planning
to perform a quantitative comparison to the conventional
navigation meta-package.

REFERENCES

[1] E. Marder-Eppstein, E. Berger, T. Foote, B. Gerkey, and K. Konolige,
“The office marathon: Robust navigation in an indoor office environ-
ment,” in International Conference on Robotics and Automation, 2010.

[2] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach
to collision avoidance,” IEEE Robotics Automation Magazine, vol. 4,
no. 1, pp. 23–33, Mar 1997.

[3] B. P. Gerkey and K. Konolige, “Planning and control in unstructured
terrain,” in In Workshop on Path Planning on Costmaps, Proceedings of
the IEEE International Conference on Robotics and Automation (ICRA,
2008.

[4] K. Kydd, S. Macrez, P. Pourcel et al., “Autonomous robot for gas and
oil sites,” in SPE Offshore Europe Conference and Exhibition. Society
of Petroleum Engineers, 2015.

[5] S. Iida and S. Yuta, “Vehicle command system and trajectory control
for autonomous mobile robots,” in Intelligent Robots and Systems ’91.
’Intelligence for Mechanical Systems, Proceedings IROS ’91. IEEE/RSJ
International Workshop on, 1991, pp. 212–217 vol.1.

[6] Y. Morales, A. Watanabe, F. Ferreri, J. Even, T. Ikeda, K. Shinozawa,
T. Miyashita, and N. Hagita, “Including human factors for planning
comfortable paths,” in 2015 IEEE International Conference on Robotics
and Automation (ICRA), May 2015, pp. 6153–6159.

[7] T. Yoshida, E. Koyanagi, S. Tadokoro, K. Yoshida, K. Nagatani,
K. Ohno, T. Tsubouchi, S. Maeyama, I. Noda, O. Takizawa et al., “A
high mobility 6-crawler mobile robotfkenaff,” in Proc. 4th International
Workshop on Synthetic Simulation and Robotics to Mitigate Earthquake
Disaster (SRMED2007), 2007, p. 38.

[8] K. Kimoto, N. Asada, T. Mori, Y. Hara, A. Ohya et al., “Development of
small size 3d lidar,” in 2014 IEEE International Conference on Robotics
and Automation (ICRA). IEEE, 2014, pp. 4620–4626.

	I Introduction
	II Algorithms and Strategy
	II-A Conventional navigation meta-package
	II-B neonavigation meta-package

	III neonavigation meta-package
	III-A costmap_3d
	III-B planner_3d
	III-C safety_limiter
	III-D trajectory_tracker

	IV Field Test on the Representative Offshore Oil Plant
	IV-A Scenario of the test
	IV-B Autonomous mobile robot system using neonavigation meta-package
	IV-C Tests and results

	V Lessons Learned and Future Works
	VI Conclusion
	References

