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Abstract— Unmanned investigation of disaster sites using
robots has become indispensable in avoiding the risk of sec-
ondary disasters or those associated with restricted areas. In
fact, in cases of extended periods of investigation or detailed
exploration of critical sites, tracked vehicles have proved to
be quite useful. However, as a tracked vehicle traverses the
terrain, it may be necessary for it to climb and negotiate unfixed
obstacles such as loose rocks and rubble. Such cases could result
in serious problems. The vehicle could tip-over or slide down
as it rolls along with loose obstacles. The primary purpose of
this research is to understand how these problems develop and
to propose suitable solutions. In this paper, the geometric tip-
over conditions relative to a basic obstacle were derived, and
whether those conditions apply to fixed obstacles and unfixed
obstacles was investigated through an experiment.

I. INTRODUCTION

Investigation of disaster sites, such as those affected
by volcanic eruptions, or earthquake-damaged buildings,
is necessary for a complete assessment of the situation
and to search for victims. However, humans might not
be able to directly investigate such sites because of the
risk of encountering secondary disasters or the restrictions
pertaining to the area. Under these conditions, unmanned
investigations utilizing robots are indispensable and in this
regard, researchers have been exploring and developing re-
lated technologies[1][2][3]. For instance, in situations in-
volving large areas of investigation, flying robots, such as
UAVs, are useful. However, in circumstances that require
extended periods of investigation or detailed investigations
on the ground, the use of ground-roving robots is appropriate.
Especially, tracked vehicles are one of the most useful types
of ground-roving robots under these conditions because they
have high traversability on uneven terrain[4][5].

As tracked vehicles navigate through disaster sites, climb-
ing over or negotiating obstacles along their paths is un-
avoidable (Fig. 1). These obstacles can be classified into
two types: (I) Obstacles that are fixed on the ground and
cannot be moved by the robot (e.g., ground contours, steps
and rocks with most of their bulk buried under the ground).
(II) Obstacles that are not fixed on the ground and can be
moved by the robot (e.g., unstable rocks and rubble). In this
research, obstacles in categories (I) and (II) are defined as
“fixed obstacles”and“unfixed obstacles”, respectively. In
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Fig. 1. A tracked vehicle navigating through a volcanic environment with
unstable rocks

previous studies, climbing conditions and control methods,
when tracked vehicles climb fixed obstacles such as steps
and stairs have been examined[6][7]. However, although fatal
problems such as tipping over and sliding down occur owing
to the motion of the obstacles, climbing of unfixed obstacles
has not been sufficiently studied.

The main objective of this research is to understand
these phenomena and propose appropriate solutions to the
problems resulting from them. In this paper, the geometric
tip-over conditions were derived with respect to obstacles
with circular cross-section, and an investigation of whether
these conditions apply to fixed and unfixed obstacles was
conducted through experiments.

II. DERIVATION OF TIP-OVER CONDITION FOR TRACKED
VEHICLES CLIMBING AN OBSTACLE ON A SLOPE

A. Research scope and conditions

In order to climb over an obstacle, tracked vehicles must
avoid two problems: tipping over and sliding down. This
paper focuses on the tip-over phenomenon among these as
well as the conditions leading to it, and on how these con-
ditions differ between climbing fixed and unfixed obstacles.
However, the sliding phenomenon is also observed because
it can occur during the experiment.

The experimental robot, a tracked vehicle with two main
tracks (left and right) but no sub-tracks, is made to navigate
through flat and sloping terrains taking into account its poten-
tial use in volcanic environments. Although the shapes of real
obstacles are complex, this research focused on basic objects
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Fig. 2. Tracked vehicle climbing an obstacle with a circular cross-section
on a slope

with circular cross-sections to understand the phenomena
described above. In the case of an unfixed obstacle on a
slope, the obstacle is considered to be rolling down the
slope. However, it is treated as not moving until the robot
starts climbing. This investigation deals with conditions and
motions after the robot has approached the obstacle and then
begun to climb from the underside to upside of the slope.
Moreover, the robot and the obstacles are treated as though
they move without any slip.

B. Geometric tip-over condition for climbing an obstacle
with a circular cross-section

The limiting diameter of obstacles with circular cross-
sections, which determines whether the robots will tip over
or not, is derived from the geometric relationship between the
center of gravity of the robot and the contact point between
the robot and the obstacle. Relative to this, the geometric
climbing condition for a tracked vehicle climbing a step
fixed on flat ground was described in a previous study [7].
This method predicts the step height that a robot can climb
with relatively high accuracy and is adopted in investigating
a tracked vehicle climbing obstacles with circular cross-
sections.

Fig. 2 shows a tracked vehicle climbing an obstacle
with a circular cross-section on a slope. In reference [7],
the climbing condition is that the distance dG (horizontal
distance between the contact point between the robot and
slope and the center of gravity of the robot) and the distance
dO (horizontal distance between two contact points―contact
point between the robot and slope, and contact point between
the robot and obstacle; dS in the reference) are equal, and the
differential values of both distances with respect the robot’s
pitch angle θ are the same. These conditions are represented
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Fig. 3. Relationship between robot motion and graphs of distances dG
and dO

as the following two equations.

dG =dO (1)

ddG
dθ

=
ddO
dθ

(2)

These equations are based on the condition that the robot can
climb over the obstacle if the center of gravity of the robot
reaches just above the contact point between the robot and
the obstacle (the edge of a step in the reference). Considering
a graph in which the vertical axis is the distance and the
horizontal axis is the robot’s pitch angle, lines dG and dO
intersect if the robot can climb over the obstacle (Fig. 3
(a)). If the robot cannot climb over the obstacle, the lines
do not intersect (Fig. 3 (c)). At their points of tangency, dG
and dO, as well as their inclinations, are equal (Fig. 3 (b)).
Therefore, equations (1) and (2) are established. If dG and
dO do not become equal, the robot’s pitch angle will increase
and tipping over will occur the moment dG becomes zero.

Along the slope, the contact point between the robot and
the obstacle is not just under the axis of the robot’s rear
sprocket wheel. In addition, as the robot moves forward, the
contact point between the obstacle and robot moves over the
surface of the obstacle because of its circular cross-section.
Taking the above into account, dG and dO are represented
by the following equations.

dG =XG cos (θ + ϕ)− YG sin (θ + ϕ)−R sinϕ (3)

dO =

{
R tan

θ

2
+

d
2 (1 + cos θ)

tan θ

−d

2
(1 + cos θ) tanϕ

}
cosϕ (4)

Moreover, their corresponding derivatives are represented as



the following.

ddG
dθ

=−XG sin (θ + ϕ)− YG cos (θ + ϕ) (5)

ddO
dθ

=R cosϕ
1− cos θ

sin2 θ

− d

2
cosϕ

1 + cos θ

sin2 θ
− d

2
cos (θ + ϕ) (6)

The limiting diameter d of the obstacle and the pitch angle
of the robot, θ, when the center of gravity of the robot
reaches just above the contact point between the robot and
the obstacle, is derived by substituting the above equations
for (1) and (2) and solving the simultaneous equations.

In this paper, the limiting diameter of an obstacle with a
circular cross-section is called the“ tip-over condition”and
not the“ climbing condition.”The reason is that the robot
might not be able to climb over the obstacle if the unfixed
obstacle rolls and both bodies slip down the slope.

C. Difference between fixed and unfixed obstacles

If the robot and the obstacle do not slip down the slope,
the time it takes for the center of gravity of the robot to
be just above the contact point between the robot and the
obstacle must differ between fixed and unfixed obstacles. In
an unfixed obstacle, the distance dO and the robot’s pitch
angle θ must change faster than that of a fixed obstacle
because in the former, the obstacle rolls and approaches
the robot. Therefore, the time referred to above is shorter
in unfixed obstacles than in fixed obstacles although their
diameters may be the same at tip-over condition.

Moreover, the motion after the center of gravity of the
robot is just above the contact point between the robot and
the obstacle must differ between fixed and unfixed obstacles.
In a fixed obstacle, the robot falls upside of the slope
following the pull of gravity, the rear of the robot lifts up
from the slope, and the front of the robot touches the slope.
In other words, the robot climbs over the obstacle. In the
case of an unfixed obstacle, as the robot attempts to climb
over and its rear leaves the slope, it then becomes supported
only at the contact point between the robot and obstacle. As
the result, the obstacle rolls, the robot slides down, and the
robot is unable to climb over.

However, the tip-over condition and the process until
tipping over or climbing over might differ from the one
mentioned above owing to slip resulting from the inadequacy
of friction and rolling of the obstacle.

III. EXPERIMENT

A. Experiment description

To verify the validity of the limiting diameter of an
obstacle with a circular cross-section and to observe the
difference between fixed and unfixed obstacles, experiments
using an actual robot were conducted. In these experiments,
the tracked vehicle was made to climb some circular cross-
section obstacles and it was observed whether the vehicle tips
over. The motion of the robot and the obstacles were also
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Fig. 4. Experimental equipments

examined. The slope angle ϕ and diameter d of both the
fixed and unfixed obstacles were varied. For each condition,
the experiment was conducted thrice.

The rescue robot“Kenaf”was used as the experimental
tracked vehicle (foreground of Fig. 4). The sub tracks of
Kenaf were removed, leaving only two main tracks. Table I
lists the parameters of Kenaf necessary to calculate the tip-
over condition. The track has grousers 8 mm in height, 8
mm in width, and an interval of 40 mm between grousers.

The experimental simulated slope, shown in Fig. 4, is
made of aluminum frames and a plywood board that can
be adjusted to change the angle of inclination. In this
experiment, the slope angle ϕ was changed from 0 ° to
30 ° at intervals of 5 ° . A urethane sheet, which has high
frictional resistance, is fastened over the surface of the board
to avoid slip between the surface of the track and the ground.
The plywood board has fixing holes through which the fixed
obstacles are secured.

Vinyl-chloride pipes with diameters of 18, 22, 26, 32, 38,
48, 60, 76, 89, 114, 140 mm were used as obstacles (upper
part of Fig. 4). The pipes, 200 mm longer than the width
of Kenaf, are set in such a way that the pipe axis coincides
with the crossing direction of the slope to complete the setup
in Fig. 2. A nonslip tape coated with mineral particles is
fastened over the surface of the pipes also to avoid slip
between the surface of the track and the obstacle. The pipes
also have fixing holes for attaching them as fixed obstacles.

TABLE I
PARAMETERS OF KENAF FOR CALCULATING TIP-OVER CONDITION

Horizontal distance of the center of gravity XG 222 [mm]

Vertical distance of the center of gravity YG 10 [mm]

Track radius R (excluding grouser height) 47.5 [mm]

Track radius R (including grouser height) 55.5 [mm]



0

20

40

60

80

100

120

140

160

180

200

0 5 10 15 20 25 30 35

D
ia

m
e
te

r 
d

[m
m

]

Slope angle Φ [deg]

Tip-over condition (including grouser height)

Tip-over condition (excluding grouser height)

tipped over

repeated sliding down due to friction

climbed over

2 1

Fig. 5. Tip-over condition curves and experimental results of fixed obstacles

B. Experimental results on fixed obstacles

Fig. 5 shows the results of the experiments on fixed
circular cross-section obstacles. The vertical axis of the graph
represents the diameter d of the obstacle and the horizontal
axis represents the slope angle ϕ. The solid line represents
the calculated tip-over condition in which the grouser height
is included in the track radius R, whereas the broken line
represents the calculated tip-over condition without including
the grouser height in the track radius. When the robot climbs
an obstacle in which the diameter is below the curve, the
robot would not tip over. However, when the robot climbs an
obstacle in which the diameter is above the curve, the robot
would tip over. Moreover, marks on the graph represent the
motion of the robot and the obstacle when the robot climbs
an obstacle of diameter d on an incline in which the slope
angle is ϕ. The circular marks mean that the robot climbed
over the obstacle without sliding down. The triangular marks
mean that the robot slid down repeatedly from the same point
owing to insufficient frictional resistance. The X marks mean
that the robot tipped over. If different results are obtained
from the three experiments, the marks and frequencies are
arranged side by side.

The graph shows that the robot climbed over obstacles
with diameters below the curves and did not climb over
obstacles with diameters above the curves. Therefore, for
fixed circular cross-section obstacles, it appears that the tip-
over condition is valid. However, on steep slopes, the robot
repeatedly slid down from same point without climbing over
and tipping over. The reason is because the friction to support
the robot’s body is insufficient because of increasing slope
angle ϕ and the robot’s pitch angle θ. However, only the
geometrical relationship has been considered in this method
and therefore, in order to predict the actual motion accurately,
it is necessary to consider mechanics and insufficiency of
friction.
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Fig. 6. Tip-over condition curves and experimental results of unfixed
obstacles

C. Experimental results on unfixed obstacles

Fig. 6 shows the experimental results of unfixed circular
cross-section obstacles. The definitions of the axes and lines
are the same as those in Fig. 5. The meaning of marks
on the graph is as follow. The circular marks mean that
the robot climbed over the obstacle without sliding down.
The square marks mean that the robot climbed over but slid
down because the obstacle rolled. The plus marks mean that
the robot slid down because the obstacle rolled. If different
results are obtained in the three experiments, the marks and
the frequencies are arranged side by side. It was observed
that whenever the slope angle is over 20 ° , the robot could
not maintain the initial posture and slid down occasionally.
When this happened, the robot was temporarily supported
until the track rotated.

It can be observed that the predicted curves and actual
motion are not the same. The robot did not climb over but
did not tip over regardless of whether or not the obstacle
diameter is below or above the predicted curves. However,
sliding down occurred because of obstacle rolling. The
reason for this could be that the friction between the robot
and the slope was not sufficient and the obstacle acted like
a roller under the track.

The obstacle did not move until the robot reached a certain
point and slid down (Fig. 7). This was possibly because of
the grousers on the vehicle tracks. The obstacle was held in
place between the grousers and these may have stopped the
roll of the obstacle (Fig. 8). In the model of this method, the
grousers on the track were not considered. It may therefore
be a possible reason why the actual motion did not match
the explanation deduced in section 2.3. This indicates that it
is necessary to include the effect of the grousers or conduct
additional experiments using a vehicle without grousers.

Moreover, in order to determine the diameter of obstacles
that the robot climb over, further experimentation was con-
ducted. It was found that the robot climbed obstacles with
diameters of about 80 mm below the curves.



Clearly, in order to accurately predict the actual motion
as well as all these phenomena, it is necessary to consider
grousers and mechanics, and sliding condition due to obsta-
cle rolling in the investigation.

IV. CONCLUSIONS

To understand the phenomena that occur when tracked
vehicles climb unfixed obstacles, the geometrical tip-over
condition as a tracked vehicle climbs over obstacles with
circular cross-sections on a slope was derived. Moreover,
experiments using an actual robot were conducted to inves-
tigate whether the conditions apply to both fixed and the
unfixed obstacles. In the derivation of the tip-over condition,
a previous method used for a fixed step on level ground was
applied to circular cross-section obstacles on a slope. From
the experimental results, it was confirmed that as the robot
attempted to climb fixed obstacles, it tipped over according to
the tip-over condition so long as sliding down did not occur.
On the other hand, in unfixed obstacles, it was observed that
the robot slid due to obstacle rolling and could not climb
over the obstacles. However, it did not tip over regardless
of whether the diameter was below or above the curves and
the robot could climb unfixed obstacles having diameters of
about 80 mm below the calculated curves.

In future studies, it is essential to consider grousers and
mechanics, and to predict the sliding condition. The tip-over
condition and the sliding condition should then be integrated
in order to predict the motion of the robot and the obstacle
accurately. Not only obstacles with circular cross-section
but also obstacles with square cross-section, obstacles with
more complex cross-sectional shapes, and those that have
no definite cross-sectional shape should be examined. In
addition, future research on design and control methods of
tracked vehicles should be advanced for climbing over larger
and more unstable obstacles.
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