可変ピッチ非平面ヘキサロータ機のシミュレーション検証

〇五十嵐傑 永谷圭司(東北大学)

1. 緒言

近年,上空からの広域調査や物資運搬などにおいて, 無人航空機(UAV: unmanned aerial vehicle)の活用 が注目されている。特に注目を集めている UAV は,垂 直離着陸が可能な、4つのロータから構成されるクアッ ドロータ機である. クアッドロータ機は、ロータの回 転数を制御することで飛行を行うが、4つの入力しか 持たないため, Roll, Pitch, Yaw, Thrust の4自由度し か制御できない.よって,水平方向に移動する時に機 体の姿勢を傾けなければならず、姿勢を一定に維持し たまま水平方向に移動することは不可能である.一方, UAV の姿勢を維持したまま、水平方向に移動すること が求められるタスクも存在する. 例えば、地表から有 線ケーブルで給電を行いつつ飛行を行う有線給電マル チロータ機 [1] は、水平方向に移動する際、UAV の機 体を傾けることでケーブルが揺れてしまい、機体に余 計な負荷がかかる.また、グリッパを有する UAV[2] で は,接触作業を行うため,姿勢を維持したまま水平移 動できることが望ましい.以上より,姿勢を維持した まま,水平方向に移動することを可能とする6自由度 独立制御可能な UAV が求められる.

マルチロータ機で、6 自由度独立制御を行うために は、6つ以上の入力が必要となる、そのため、6つの ロータから構成されるヘキサロータ機を用いて6自由 度独立制御を行う研究が,近年進められてきた.一般 的なヘキサロータ機は、全てのロータが同じ向きを向 いているため、クアッドロータ機と同様に4自由度独 立制御となる.これに対し、各ロータを予め傾けて取 り付けることで、6自由度独立制御の実現が可能となる ことが知られている [3]. なお, ロータを傾けて取り付 けたヘキサロータ機を、本稿では、非平面ヘキサロー タ機と呼称する.この非平面ヘキサロータ機は、6自由 度独立制御が可能であるが、一般のロータでは、発生 することができる推力の大きさには制限がある. その ため、この制限を超えた推力を求められたとき、機体 は,指令通りの飛行を行うことができない.この問題 を解決するため、本研究では、可変ピッチロータを非 平面ヘキサロータに導入する可変ピッチ非平面ヘキサ ロータ機を提案することとした. 可変ピッチロータを 導入することで,従来の非平面ヘキサロータ機よりも, 姿勢,水平方向移動の可操作範囲が拡大すると考えら れる.本稿では、固定ピッチ非平面ヘキサロータ機と可 変ピッチ非平面ヘキサロータ機について、 シミュレー ションを用いた可操作範囲の比較を行ったので、これ を報告する.

2. 可変ピッチ非平面ヘキサロータ機の提案

本章では,非平面ヘキサロータ機の6自由度独立制 御手法について説明し,その課題点を解決する可変ピッ チ非平面ヘキサロータ機を提案する.

2.1 非平面ヘキサロータ機の制御

まず,非平面へキサロータ機の6自由度独立制御手 法について述べる[3]. 慣性座標系から見た機体の重心 位置の座標 *X*,姿勢角 Φ を

$$X = \left[\begin{array}{ccc} x & y & z \end{array} \right]^{\mathrm{T}}, \Phi = \left[\begin{array}{ccc} \phi & \theta & \psi \end{array} \right]^{\mathrm{T}}$$

と表す.ただし, ϕ は x 軸まわりの回転角, θ は y 軸まわりの回転角, ψ は z 軸まわりの回転角で ある.また,機体の姿勢を回転行列 R_B で表すと $R_B = R_x(\phi)R_u(\theta)R_z(\psi)$ となる.

次に機体の運動方程式は、次式で与えることができる.

$$m\dot{v} = -mge_Z + R_B F \tag{1}$$

$$I\dot{\Omega} + \Omega \times I\Omega = M \tag{2}$$

ここで, *m* は機体質量, *I* は機体の慣性テンソル, *g* は 重力加速度, $e_Z = \begin{bmatrix} 0 & 0 & 1 \end{bmatrix}^T$, *v* は慣性座標系か ら見た機体の重心速度, Ω は機体座標系から見た機体 の角速度を表す.また, *F* は機体座標系から見て機体 の重心に加わる力, *M* は機体の重心に加わるモーメン トである.

また行列 J を

$$J = \begin{bmatrix} \cos\theta\cos\psi & \sin\psi & 0\\ -\cos\theta\sin\psi & \cos\psi & 0\\ \sin\theta & 0 & 1 \end{bmatrix}$$

と定義すると、 $\Omega = J \dot{\Phi}$ となる.また、 $\dot{X} = v$ である. 以上を、式(1),(2)に代入すると、以下の式が得られる.

$$\ddot{X} = -ge_Z + \frac{1}{m}R_BF \tag{3}$$

$$\ddot{\Phi} = -J^{-1}\dot{J}\dot{\Phi} + J^{-1}I^{-1}(M - J\dot{\Phi} \times IJ\dot{\Phi}) \quad (4)$$

次に、ロータ*i*から発生する推力を*t_i*とし、*T* = $\begin{bmatrix} t_1 & \cdots & t_6 \end{bmatrix}^T$ とすると、以下の式が得られる. $\begin{bmatrix} F\\M \end{bmatrix} = \begin{bmatrix} s_1 & \cdots & s_6\\ p_1 \times s_1 + c_1 s_1 & \cdots & p_6 \times s_6 + c_6 s_6 \end{bmatrix} T$ (5)

ここで, s_i は機体座標系から見たロータ i から発生す る推力の方向を表す単位ベクトル, p_i は機体座標系か ら見たロータ i の位置を表す単位ベクトル, c_i はロータ i から発生する推力を反トルクに変換する係数である. 次に新たな入力 $u_F \ge u_M$ を用いて、 $F \ge M$ を以下のように設定する.

$$F = R_B^{\rm T}(mu_F + mge_Z) \tag{6}$$

$$M = IJu_M + I\dot{J}\dot{\Phi} + J\dot{\Phi} \times IJ\dot{\Phi} \tag{7}$$

この式(6),(7)を式(3),(4)に代入すると,

$$\ddot{X} = u_F, \ddot{\Phi} = u_M$$

が得られる.なお、 u_F と u_M は、ゲイン $K_X, K_{\dot{X}}K_{\Phi}, K_{\dot{\Phi}}$ を用いて以下のように設計する.

$$u_F = -K_X(X - X_d) - K_{\dot{X}}\dot{X} \tag{8}$$

$$u_M = -K_{\Phi}(\Phi - \Phi_d) - K_{\dot{\Phi}}\dot{\Phi} \tag{9}$$

ここで、 X_d は目標位置、 Φ_d は目標姿勢角である.式 (5)~(9) を用いることで、入力推力 $u = \begin{bmatrix} u_1 & \cdots & u_6 \end{bmatrix}^T$ は、以下の式で求められる.

$$u = \begin{bmatrix} s_1 & \cdots & s_6 \\ p_1 \times s_1 + c_1 s_1 & \cdots & p_6 \times s_6 + c_6 s_6 \end{bmatrix}^{-1} \\ \times \begin{bmatrix} R_B^{\mathrm{T}}(mge_Z - m(K_X(X - X_d) + K_{\dot{X}}\dot{X})) \\ I\dot{J}\dot{\Phi} + J\dot{\Phi} \times IJ\dot{\Phi} - IJ(K_{\Phi}(\Phi - \Phi_d) + K_{\dot{\Phi}}\dot{\Phi}) \end{bmatrix}$$

以上より,目標位置ならびに目標姿勢角を決めること で,機体の位置と姿勢角の6自由度を独立に制御する 入力 *u* が求まる.

2.2 可変ピッチ非平面ヘキサロータ機

前節では,非平面ヘキサロータ機の6自由度独立制 御手法について述べたが,実マルチロータ機に適用す る際の課題点として、入力推力の大きさに制限がある 点が挙げられる. 従来のマルチロータ機に用いられて いるロータは固定ピッチロータであり、プロペラのピッ チ角が固定のまま、ロータの回転数を制御することで 推力変化を実現している.しかしながら,固定ピッチ ロータは、ロータに対して上向きの推力(正の推力)を 発生させるが、下向きの推力(負の推力)を発生させ ることができない.よって、6自由度独立制御するため の入力推力として,負の推力が求められたとき,固定 ピッチロータでは望んだ推力を発生することができな くなるため,指令通りの飛行を行えないと考えられる. そこで、本研究では、非平面ヘキサロータ機に可変ピッ チロータを導入する可変ピッチ非平面ヘキサロータ機 を提案する.可変ピッチロータとは、プロペラのピッ チ角を変えることができるロータであり、回転数を一 定に保ったままピッチ角を制御することで推力を変化 させることができるため、固定ピッチロータよりも応 答性が良いことが知られている [4]. また, ピッチ角を 変化させることで、負の推力を発生させること(逆ピッ チ)も可能である.これにより、固定ピッチロータと 比較し,推力の大きさの制限が大幅に解消され,6自 由度独立制御において,姿勢角,水平移動の可操作範 囲を拡大させることが可能となると考えられる.

図1 可変ピッチ非平面ヘキサロータ機

シミュレーション検証

本章では、従来の固定ピッチ非平面へキサロータ機 と可変ピッチ非平面へキサロータ機について、シミュ レーションを用いた可操作範囲の比較結果を示す.こ の比較検証では、2つのシミュレーションを行った.1 つ目は、機体の位置を変化させずに操作できる姿勢の 範囲を検証するシミュレーションである.また、2つ 目は、指定したルートを機体の姿勢を変動させずに水 平移動した際の、機体の位置と姿勢状態を検証するシ ミュレーションである.

3.1 シミュレーションモデル

図1に、今回のシミュレーションに用いる可変ピッ チ非平面へキサロータ機のシミュレーションモデルを 示し、表1に、その各パラメータを示す.なお、固定 ピッチ非平面へキサロータ機は、可変ピッチ非平面へ キサロータ機のピッチ角を固定し、回転数を制御する ことで飛行を行うものとする.一方、可変ピッチ非平 面へキサロータ機は、回転数を 600 rad/s で固定し、プ ロペラのピッチ角を制御することで飛行を行う.

表1 可変ピッチ非平面ヘキサロータ機のパラメータ

m	$1.584 \; [kg]$
Ι	diag(0.0347, 0.0458, 0.0977) [kg \cdot m ²]
s_1, s_4	$[-0.2055, 0.3559, 0.9117]^{\mathrm{T}}$
s_2, s_5	$[0.4109, 0.0000, 0.9117]^{\mathrm{T}}$
s_3, s_6	$[-0.2055, -0.3559, 0.9117]^{\mathrm{T}}$
p_1	$[0.1861, 0.1075, 0.037]^{\mathrm{T}}[\mathrm{m}]$
p_2	$[0.0000, 0.2150, 0.037]^{T}[m]$
p_3	$[-0.1861, 0.1075, 0.037]^{\mathrm{T}}[\mathrm{m}]$
p_4	$[-0.1861, -0.1075, 0.037]^{T}[m]$
p_5	$[0.0000, -0.2150, 0.037]^{\mathrm{T}}[\mathrm{m}]$
p_6	$[0.1861, -0.1075, 0.037]^{\mathrm{T}}[\mathrm{m}]$
c_1, c_3, c_5	0.16[m]
c_2, c_4, c_6	-0.16[m]
K_X	$\operatorname{diag}(1,1,1)$
$K_{\dot{X}}$	$\operatorname{diag}(2,2,2)$
K_{Φ}	diag(20, 20, 20)
$K_{\dot{\Phi}}$	diag(2, 2, 2)

(a) Roll 方向 最大姿勢角 0.40 rad

(b) Pitch 方向 最大姿勢角 1.06 rad

3.2 姿勢角可操作範囲シミュレーション

本検証では、機体の位置を変化させずに操作可能な Roll 方向, Pitch 方向それぞれの最大姿勢角をシミュ レーションで確認し,固定ピッチ非平面へキサロータ 機と可変ピッチ非平面ヘキサロータ機の姿勢可操作範 囲の比較を行った.シミュレーションの結果,固定ピッ チ非平面ヘキサロータ機を Roll 方向, Pitch 方向に操 作出来る最大角度に傾けた時, Roll 方向の最大姿勢角 は 0.22 rad, Pitch 方向の最大姿勢角は 0.20 rad であっ た. 一方, 可変ピッチ非平面ヘキサロータ機について は, Roll 方向の最大姿勢角は 0.40 rad, Pitch 方向の最 大姿勢角は1.06 rad であった. また, 両者とも, 位置の 変動は見られなかった.以上より,可変ピッチ非平面へ キサロータ機を用いることで、6自由度独立制御にお ける姿勢角の可操作範囲が拡大したことが確認できた. これは,可変ピッチロータの逆ピッチにより負の推力 を発生することができるためであると考えられる.可 変ピッチ非平面ヘキサロータ機を Roll 方向, Pitch 方 向に操作出来る最大角度に傾けた時のシミュレーショ ン画面の様子を,図2に示す.

3.3 水平移動可操作範囲シミュレーション

次に,指定したルートに沿って,姿勢変動させずに 水平移動した際の機体の位置と姿勢の状態を,固定ピッ チ非平面へキサロータ機の場合と可変ピッチ非平面へ キサロータ機の場合で比較した.機体は,以下の手順 で指定したルートの飛行を行う.

- 1. シミュレーション開始3秒後に z 軸方向に+1m 移 動 (4 秒間)
- 2. x 軸方向に+2m 移動(4 秒間)
- 3. y 軸方向に+2m 移動(4 秒間)
- 4. x 軸方向に-4m 移動(4 秒間)
- 5. y 軸方向に-4m 移動(4 秒間)
- 6. x 軸方向に+4m 移動(4 秒間)

指定したルートを図3に示す.本検証では、姿勢状態の指令値をRoll,Pitch,Yaw方向についてそれぞれ0

図3 飛行指定ルート

rad にしているため、機体は姿勢を変動させずに飛行 することが求められる.

まず,固定ピッチ非平面ヘキサロータ機の飛行結果 について述べる.シミュレーションの結果, x 軸方向, y 軸方向については,指令された位置へのスムーズな 移動を確認することができた.一方, z 軸方向について は,目標位置からの変動を確認した.図4(a)は z 軸方 向の機体位置と指令位置のグラフである.このグラフ より, z 軸方向において,機体は指定された位置から最 大約0.63 m 逸れた動きが確認された.

また, 姿勢についても目標姿勢からの変動が確認された. 図4(b)に, 機体の姿勢変動のグラフを示す. この グラフより, 機体は Roll 方向に最大 0.117 rad, Pitch 方向に最大 0.168 rad, Yaw 方向に最大 0.039 rad の姿 勢変動が発生したことが確認された. なお, z 軸方向 の動きと機体の姿勢変動については, 同タイミングで 発生した. これは, 固定ピッチロータでは負の推力を 発生できないため, 負の推力がロータに求められた際, 機体が指令通りの動作を実施できなかったためである と考えられる.

次に,固定ピッチ非平面ヘキサロータ機の飛行結果 について述べる.シミュレーションの結果, x 軸方向,

(a) 位置 (z 軸方向)

(b) 姿勢角

図4 固定ピッチ非平面ヘキサロータ機 水平移動シミュレーション

図5 可変ピッチ非平面ヘキサロータ機 水平移動シミュレーション

y 軸方向, z 軸方向いずれも,指令された位置へのス ムーズな移動が確認できた.図 5(a)は, z 軸方向の機 体位置と指令位置のグラフである.このグラフより, z 軸方向に関しても指令位置へのスムーズな移動が確認 された.これは可変ピッチロータにより,負の推力が 発生できているため,機体が指令通りの動作を実施で きたためと考えられる.

一方, 姿勢については, 目標姿勢からの若干の変動 を確認した. 図 5(b) に, 機体の姿勢変動のグラフを 示す. このグラフより, 機体は Roll 方向に最大 0.102 rad, Pitch 方向に最大 0.082 rad, Yaw 方向に最大 0.011 rad の姿勢変動が確認された. なお, 変動した姿勢角 は, Pitch 方向, Yaw 方向において, 固定ピッチ非平 面へキサロータ機で発生した姿勢変動の半分以下であ ることが分かる.

以上より,可変ピッチ非平面へキサロータ機は,水 平移動の可操作範囲を拡大することならびに,固定ピッ チ非平面へキサロータ機よりも姿勢変動が小さくなる ことを,シミュレーションを用いて確認することがで きた.

4. 結言

本研究では、非平面へキサロータ機の6自由度独立 制御の可操作範囲を拡大する手法として、可変ピッチ ロータを用いた可変ピッチ非平面へキサロータ機を提 案し、シミュレーションモデルを作成した.また、こ のモデルを使用し、固定ピッチ非平面へキサロータ機 と可変ピッチ非平面へキサロータ機の性能を比較する ことで,可変ピッチ非平面へキサロータ機では姿勢変動,水平移動,共に可操作範囲が拡大していることを 確認することができた.今後,可変ピッチ非平面へキ サロータ機の実機を製作し,その性能評価を行う予定 である.

参考文献

- [1] Seiga KIRIBAYASHI, Kaede YAKUSHIGAWA, Keiji NAGATANI: "Design and Development of Tether-Powered Multirotor Micro Unmanned Aerial Vehicle System for Remote-Controlled Construction Machine" Preprints of the 11th International Conference on Field and Service Robotics, pp.#24, 2017.
- [2] G. Heredia, A.E. Jimenez-Cano, I. Sanchez, D. Llorente, V. Vega, J. Braga, J.A. Acosta and A. Ollero: "Control of a multirotor outdoor aerial manipulator" Intelligent Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Conference on, pp.3417-3422, 2014
- [3] 安田 真大, 伊吹 竜也, 鈴木 洋史, 三平 満司: "ヘキサロー タの動的可操作性に基づく切替位置・姿勢制御" 計測自動 制御学会論文集, vol.52, no.9, pp.507-515, 2016.
- [4] Cutler, M., Ure, N. K., Michini, B., How, J: "Comparison of fixed and variable pitch actuators for agile quadrotors" AIAA Guidance, Navigation, and Control Conference, pp.6406, 2011.